5.3 Second Derivative Test

CALCULUS
Write your questions here!

CONCAVITY

Point of Inflection

Second Derivative Test

Suppose $\boldsymbol{f}^{\prime}(\boldsymbol{c})=0$. Then:

- If $\boldsymbol{f}^{\prime \prime}(\boldsymbol{c})>0$, then \boldsymbol{f} has a relative minimum at $\boldsymbol{x}=\boldsymbol{c}$.
- If $\boldsymbol{f}^{\prime \prime}(c)<0$, then f has a relative maximum at $x=c$.

Use the second derivative test to find the relative extrema.
$f(x)=x^{4}-2 x^{2}$

Do a sign analysis of second derivative to find intervals where f is concave up or down.

Interval			
Test Value			
$\boldsymbol{f}^{\prime \prime}(x)$			
Conclusion			

Particle Motion

A particle is moving along the x-axis with position function $x(t)=\frac{1}{3} t^{3}-4 t^{2}+12 t$. Find the velocity and acceleration. Describe the motion of the particle.

Given the graph of \boldsymbol{f}^{\prime}, find the points of inflection and state the intervals of concavity.

SUMMARY:

Now,
summarize your notes \Rightarrow here!

Use the sign chart(s) to answers the following.

1. Given $g(x)$ is twice differentiable on $[-3,3]$

\boldsymbol{x}	$-3<\boldsymbol{x}<-2$	-2	$-2<x<1$	1	$1<x<3$
$\boldsymbol{g}^{\prime}(\boldsymbol{x})$	Negative	0	Positive	0	Negative

Intervals where $g(x)$ is increasing:
Intervals where $g(x)$ is decreasing:

Extrema:

x	$-3<x<-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}<x<3$
$g^{\prime \prime}(x)$	Positive	0	Negative

Intervals where $g(x)$ is concave up:

Intervals where $g(x)$ is concave down:

Points of Inflection:
2. Given $f(x)$ is continuous and twice differentiable.

Interval	$x<-1$	$x=-1$	$-1<x<1$	$x=1$	$1<x<2$	$x=2$	$2<x<4$	$x=4$	$4<x<5$	$x=5$	$x>5$
$f^{\prime}(\boldsymbol{x})$	Positive	0	Negative	Negative	Negative	0	Negative	Negative	Negative	0	Positive
$f^{\prime \prime}(x)$	Negative	Negative	Negative	0	Positive	0	Negative	0	Positive	Positive	Positive

Intervals where $f(x)$ is increasing:

Intervals where $f(x)$ is decreasing:

Extrema:

Intervals where $f(x)$ is concave up:

Intervals where $f(x)$ is concave down:

Points of Inflection:
3. Given $f(x)$ is continuous and twice differentiable.

Interval	$(-\infty,-2)$	-2	$(-2,3)$	3	$(3, \infty)$
Test Value	$x=-4$	$x=-2$	$x=0$	$x=3$	$x=4$
$f^{\prime}(x)$	$f^{\prime}(-4)=4$	$f^{\prime}(-2)=0$	$f^{\prime}(0)=-7$	$f^{\prime}(3)=-3$	$f^{\prime}(4)=-4$
$f^{\prime \prime}(x)$	$f^{\prime \prime}(-4)=-6$	$f^{\prime \prime}(-2)=-4$	$f^{\prime \prime}(0)=-7$	$f^{\prime \prime}(3)=0$	$f^{\prime \prime}(4)=8$

Intervals where $f(x)$ is increasing:

Intervals where $f(x)$ is decreasing:

Extrema:

Intervals where $f(x)$ is concave up:

Intervals where $f(x)$ is concave down:

Points of Inflection:

Find the points of inflection.

4. $f(x)=\sin \frac{x}{2}$ on the interval $(-\pi, 3 \pi)$
5. $f(x)=e^{-x^{2}}$

Find all points of inflection and relative extrema. Use the Second Derivative Test where applicable.
6. $f(x)=5+3 x^{2}-x^{3}$
7. $h(x)=(2 x-5)^{2}$
8. $f(x)=x+2 \sin x$ on the interval $(0,2 \pi)$
9. $f(x)=2 x^{4}-8 x+3$

State the intervals of concavity.

10. $g(x)=\frac{x}{x-1}$
11. $f(x)=x^{3}-12 x$

A particle moves along the x-axis with the position function given below. Find the velocity and acceleration. Use a sign chart to describe the motion of the particle.
12. $x(t)=\frac{1}{3} t^{3}-3 t^{2}+8 t+1$ where $t>0$
13. $x(t)=t-3(t-4)^{\frac{1}{3}}$ where $t>0$

Given the graph of $f^{\prime}(x)$. State the intervals of concavity. Find the point(s) of inflection.

15.

17.

MULTIPLE CHOICE

1. Find the point of inflection of $g(x)=x^{2}-\frac{8}{x}$ when $x>0$.
(A) 1
(B) 2
(C) 4
(D) 8
(E) 16
2. The domain of the function f is $x>0$. If $f^{\prime}(x)=x \ln x$, then $f(x)$ is concave down for all
(A) $0<x<1$
(B) $0<x<e$
(C) $0<x<\frac{1}{e}$
(D) $x>\frac{1}{e}$
(E) $x>e$
3. Consider a function f whose first derivative is given by $f^{\prime}(x)=\frac{1-\ln x}{x^{2}}$. It is clear that $f^{\prime}(e)=0$, so e is a critical number. The value $f^{\prime \prime}(e)$ is
(A) negative, making $f(e)$ a local minimum
(B) positive, making $f(e)$ a local minimum
(C) negative, making $f(e)$ a local maximum
(D) positive, making $f(e)$ a local maximum
(E) none of the above
4. Consider the function given by $f(x)=27 x-x^{3}$. The function f is decreasing on the interval(s)
(A) $[-3,3]$ only
(B) $[0,3]$ only
(C) $[0, \infty)$ only
(D) $[-3 \sqrt{3}, 3 \sqrt{3}]$ only
(E) $(-\infty,-3]$ and $[3, \infty)$
5. Let f be a function defined for all real numbers x. If $f^{\prime}(x)=\frac{\left|9-x^{2}\right|}{x-3}$, then f is decreasing on the interval
(A) $(-\infty, 3)$
(B) $(-\infty, \infty)$
(C) $(-3,6)$
(D) $(-3, \infty)$
(E) $(3, \infty)$
\qquad out of 7
6. A particle moves along a straight line. For $0 \leq t \leq 5$, the velocity of the particle is given by $v(t)=-2+\left(t^{2}+3 t\right)^{6 / 5}-t^{3}$, and the position of the particle is given by $s(t)$. It is known that $s(0)=10$.
a. Find all values of t in the interval $2 \leq t \leq 4$ for which the speed of the particle is 2 .
b. Find all times t in the interval $0 \leq t \leq 5$ at which the particle changes direction. Justify your answer.
c. Is the speed of the particle increasing or decreasing at time $=4$? Give a reason for your answer.
