5.3 Second Derivative Test

Conclusion

NOTES

Particle Motion

A particle is moving along the x-axis with position function $x(t) = \frac{1}{3}t^3 - 4t^2 + 12t$. Find the velocity and acceleration. Describe the motion of the particle.

SUMMARY:

5.3 Second Derivative Test

Use the sign chart(s) to answers the following.

1. Given $g(x)$ is twice differentiable on $[-3, 3]$						
	x	-3 < x < -2	-2	-2 < x < 1	1	1 < x < 3
	g'(x) Negative		0	Positive	0	Negative

Intervals where g(x) is increasing:

Intervals where g(x) is decreasing:

Extrema:

x $-3 < x < -\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2} < x < 3$ g''(x) Positive 0 Negative

Intervals where g(x) is concave up:

Intervals where g(x) is concave down:

Points of Inflection:

2. Given $f(x)$ is continuous and twice differentiable.											
Interval	<i>x</i> < -1	<i>x</i> = -1	-1 < x < 1	<i>x</i> = 1	1 < x < 2	<i>x</i> = 2	2 < x < 4	<i>x</i> = 4	4 < x < 5	<i>x</i> = 5	<i>x</i> > 5
f'(x)	Positive	0	Negative	Negative	Negative	0	Negative	Negative	Negative	0	Positive
<i>f</i> ''(<i>x</i>)	Negative	Negative	Negative	0	Positive	0	Negative	0	Positive	Positive	Positive
Intervals where $f(x)$ is increasing:						Intervals where $f(x)$ is concave up:					
Intervals where $f(x)$ is decreasing:						Intervals where $f(x)$ is concave down:					
Extrema:						Points of Inflection:					

3. Given $f(x)$ is continuous and twice	differentiable.
---	-----------------

Interval	(−∞,−2)	-2	(-2,3)	3	(3 ,∞)
Test Value	x = -4	x = -2	x = 0	x = 3	<i>x</i> = 4
f '(x)	f'(-4) = 4	f'(-2) = 0	f'(0) = -7	f'(3) = -3	f'(4) = -4
<i>f</i> ''(<i>x</i>)	f''(-4) = -6	f''(-2) = -4	f''(0) = -7	f''(3) = 0	f''(4) = 8

Intervals where f(x) is increasing:

Intervals where f(x) is decreasing:

Intervals where f(x) is concave up:

Intervals where f(x) is concave down:

Points of Inflection:

PRACTICE

Extrema:

Find the points of inflection.					
4. $f(x) = \sin \frac{x}{2}$ on the interval $(-\pi, 3\pi)$	5. $f(x) = e^{-x^2}$				
Find all points of inflection and relative extrema. Use					
6. $f(x) = 5 + 3x^2 - x^3$	7. $h(x) = (2x - 5)^2$				
8. $f(x) = x + 2 \sin x$ on the interval $(0, 2\pi)$	9. $f(x) = 2x^4 - 8x + 3$				
State the intervals of concavity.					
10. $g(x) = \frac{x}{x-1}$	11. $f(x) = x^3 - 12x$				
<i>x</i> -1					

A particle moves along the *x*-axis with the position function given below. Find the velocity and acceleration. Use a sign chart to describe the motion of the particle.

12. $x(t) = \frac{1}{3}t^3 - 3t^2 + 8t + 1$ where t > 0

13. $x(t) = t - 3(t - 4)^{\frac{1}{3}}$ where t > 0

MULTIPLE CHOICE

1. Find the point of inflection of $g(x) = x^2 - \frac{8}{x}$ when x > 0.

- (A) 1
- (B) 2
- (C) 4
- (D) 8
- (E) 16
- 2. The domain of the function f is x > 0. If $f'(x) = x \ln x$, then f(x) is concave down for all
 - (A) 0 < x < 1
 - (B) 0 < x < e
 - (C) $0 < x < \frac{1}{e}$
 - (D) $x > \frac{1}{\rho}$
 - (E) x > e
- 3. Consider a function f whose first derivative is given by $f'(x) = \frac{1 \ln x}{x^2}$. It is clear that f'(e) = 0, so e is a critical number. The value f''(e) is
 - (A) negative, making f(e) a local minimum
 - (B) positive, making f(e) a local minimum
 - (C) negative, making f(e) a local maximum
 - (D) positive, making f(e) a local maximum
 - (E) none of the above

4. Consider the function given by $f(x) = 27x - x^3$. The function f is decreasing on the interval(s)

- (A) [-3,3] only
- (B) [0,3] only
- (C) $[0, \infty)$ only
- (D) $\left[-3\sqrt{3}, 3\sqrt{3}\right]$ only
- (E) $(-\infty, -3]$ and $[3, \infty)$

- 5. Let f be a function defined for all real numbers x. If $f'(x) = \frac{|9-x^2|}{x-3}$, then f is decreasing on the interval
 - (A) (−∞,3)
 - (B) $(-\infty,\infty)$
 - (C) (-3,6)
 - (D) $(-3, \infty)$
 - (E) **(**3,∞**)**

You are allowed to use a graphing calculator 🕅

FREE RESPONSE

Your score: _____ out of 7

- 1. A particle moves along a straight line. For $0 \le t \le 5$, the velocity of the particle is given by $v(t) = -2 + (t^2 + 3t)^{6/5} t^3$, and the position of the particle is given by s(t). It is known that s(0) = 10.
 - a. Find all values of t in the interval $2 \le t \le 4$ for which the speed of the particle is 2.

b. Find all times *t* in the interval $0 \le t \le 5$ at which the particle changes direction. Justify your answer.

c. Is the speed of the particle increasing or decreasing at time = 4? Give a reason for your answer.