6.1 Implicit Differentiation

Name:			

Recall:

Notes

Explicit equation

Implicit equation

Finding the derivative **explicitly**: $y^2 + 3x = 5x^3$

When you can't isolate y in terms of x (or if solving for y makes taking the derivative CRAZY), then you want to take the derivative implicitly.

Implicit Differentiation Example: Find $\frac{dy}{dx}$ for $y^2 + 3x = 5x^3$

Step 1: Take the derivative normally. Each time a "y" is involved, include a $\frac{dy}{dx}$.

Step 2: Gather all terms with $\frac{dy}{dx}$ on the left side, everything else on the right.

Step 3: Factor out the $\frac{dy}{dx}$ if necessary to create only one $\frac{dy}{dx}$ term.

Step 4. Solve for $\frac{dy}{dx}$.

$$2. \ y^3 - 2x = x^4 + 2y$$

$$3. \ 3x^2 + 4xy^2 - 5y^3 = 10$$

Write your questions and thoughts here!

6.1 Implicit Differentiation

Notes

<u>Derivative at a point – implicit differentiation</u>.

4. Find the equation of any tangent line for $x^2 + y^2 = 4$ at x = 1.

2nd Derivative – Implicit Differentiation:

Finding the 2nd derivative implicitly is a little trickier than finding it explicitly. Once you have done a few, you'll see it's just a matter of algebraic substitution.

5. Find $\frac{d^2y}{dx^2}$ for $\cos y = 2x^2$

6.1 Implicit Differentiation Calculus

Name:

Practice

Find $\frac{dy}{dx}$.

$$1. \ 4 = 5x^2 + 2y^3$$

$$2. \ 5y^2 + 3 = x^2$$

3.
$$3x = y^3 + 4$$

$$4. \ x^2 = 4y^3 + 5y^2$$

$$5. (4y^3 + 4)^2 = 3x^2$$

6.
$$2x^3 = (3y^3 + 4)^2$$

$$7. \ -3y + y^3 = 5x$$

$$8. \ 5x^3 - 2y = 5y^3$$

$$9. \sin(x+y) = 2x$$

10.
$$4x + 1 = \cos y^2$$

$$11. \ 3x^2 - 6y^2 + 5 = 9y - 3x$$

12.
$$y^2 - 7y + x^2 - 4x = 10$$

13.
$$e^{y^3} = x^3 + 1$$

14.
$$5x^2 - e^{4y^2} = -6$$

15.
$$\ln(4y^3) = 5x + 3$$

$$16. \ x^3 + 1 = \ln(3y^7)$$

17.
$$x^3 + y^3 = 6xy$$

$$18. \ x^3 - 3x^2y^2 = 3y^3$$

19.
$$xy = -3$$

$$20. \ x^2 + y^2 = 8$$

$$21. \ y^2 = 5x^2 - 3x$$

22.
$$y^3 = x^2 - 4$$

23. $y^2 + 3y = 4x - 5$

Find the slope of the tangent line at the given point.

24.
$$2 = 3x^4 + xy^4$$
 at $(-1, 1)$

25. $x^2 - y^2 = 27$ at (6, -3)

26.
$$x \ln y = 4 - 2x$$
 at $(2, 1)$

27. $(x-y)^2 - 4x = 20y$ at (4,2)

Write an equation of the line tangent to the curve at the given point.

28.
$$x^2 + y^2 + 19 = 2x + 12y$$
 at (4, 3)

29. $x \sin 2y = y \cos 2x$ at $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

- 30. Find the points on the curve $x^2 + 2y^2 = 8$ where the tangent line is parallel to the x-axis.
- 31. Find the point(s) where the following graph has a **vertical** tangent line. $x + y = y^2$

Test Prep

6.1 Implicit Differentiation

1. If $x + \sin y = \ln y$, then $\frac{dy}{dx} =$

(A) $y + y \cos y$

(B) $\frac{y+\cos y-1}{y}$

(C) $\frac{1-y}{y\cos y}$

(D) $\frac{y}{y\cos y+1}$

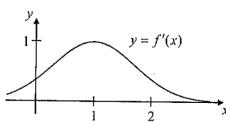
 $(E) \frac{y}{1 - y \cos y}$

2. The first derivative of the function f is given by $f'(x) = \frac{\cos^2 x}{x} - \frac{1}{5}$. How many critical values does f have on the open interval (0, 10)?

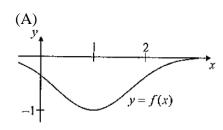
- (A) One
- (B) Three
- (C) Four
- (D) Five
- (E) Seven

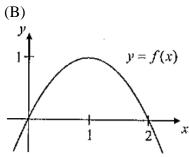
3. A curve is generated by the equation $x^2 + 4y^2 = 16$. Determine the number of points on this curve whose corresponding tangent lines are horizontal.

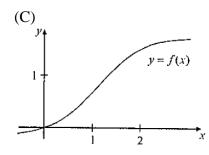
- (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E) 4

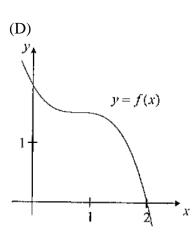


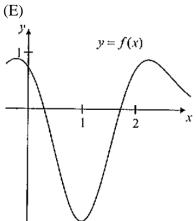
4. The graph of f'(x) is shown above. Which of the following could be the graph of f(x)?





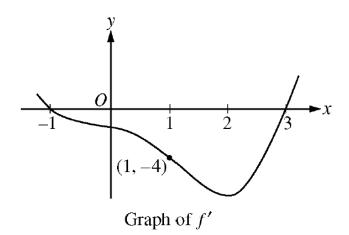






5. A curve given by the equation $x^3 + xy = 8$ has slope given by $\frac{dy}{dx} = \frac{-3x^2 - y}{x}$. The value of $\frac{d^2y}{dx^2}$ at the point where x = 2 is

- (A) -6
- (B) -3
- (C) 0
- (D) 4
- (E) undefined



Let f be a twice-differentiable function defined on the interval -1.2 < x < 3.2 with f(1) = 2. The graph of f', the derivative of f, is shown above. The graph of f' crosses the x-axis at x = -1 and x = 3 and has a horizontal tangent at x = 2. Let g be the function given by $g(x) = e^{f(x)}$.

- (a) Write an equation for the line tangent to the graph of g at x = 1.
- (b) For -1.2 < x < 3.2, find all values of x at which g has a local maximum. Justify your answer.
- (c) The second derivative of g is $g''(x) = e^{f(x)} \left[\left(f'(x) \right)^2 + f''(x) \right]$. Is g''(-1) positive, negative or zero? Justify your answer.
- (d) Find the average rate of change of g', the derivative of g, over the interval [1,3].