\qquad

DATE:

\qquad

CALCULATOR ACTIVE

Sketch the following rectangular approximations. Find the width of each subinterval.

1. Midpoint on the interval $[-2,4]$ with $n=6$ subintervals

Width of each subinterval $=$

2. Right Endpoint on $[-3,3]$ with $n=12$ subintervals

Width of each subinterval $=$

3. Left Endpoint on $[-3,-1]$ with $n=8$ subintervals

Width of each subinterval $=$

Approximate the area under the curve using the given rectangular approximation.

4. $f(x)=\frac{1}{5} x^{3}-x+7$

Midpoint on the interval [-1,2] with $n=6$ subintervals
5. $f(x)=\frac{6}{x}+5$

Left Endpoint on [-2,2] with $n=5$ subintervals
6. $f(x)=-0.2 x^{2}-x+12$

Right Endpoint on [-1,3]
with $n=8$ subintervals

Use the information provided to answer the following.

7. Let $y(t)$ represent the weight loss per week of a contestant on the Biggest Loser, where y is a differentiable function of t. The table shows the weight loss per week recorded at selected times.

Time (week)	2	4	7	8	11
$\boldsymbol{y}(\boldsymbol{t})$ (pounds/week)	14	12	18	14	17

a. Use the data from the table and a left Riemann Sum with four subintervals. Show the computations that lead to your answer.
b. What does your answer represent in this situation?

Use the information provided to answer the following.

8. Let $v(t)$ represent the rate of change of a hot air balloon over time, where v is a differentiable function of t. The table shows the rate of change at selected times.

Time (minutes)	4	8	10	13	15
$\boldsymbol{v}(\boldsymbol{t})$ (meters/min)	5.2	6.3	7.1	7.9	8.4

a. Use the data from the table and a right Riemann Sum with four subintervals. Show the computations that lead to your answer.
b. What does your answer represent in this situation?
9. A particle moves along a horizontal line with a positive velocity $v(t)$, where v is a differentiable function of t. The time t is measured in seconds, and the velocity is measured in $\mathrm{cm} / \mathrm{sec}$. The velocity of the particle at selected times is given in the table below.

Time $(\mathbf{s e c})$	0	2	4	6	8	10	12	14	16
$\boldsymbol{v}(\boldsymbol{t})$ $(\mathrm{cm} / \mathrm{sec})$	21	18	15	23	27	31	35	32	29

a. Use the data from the table and a midpoint Riemann Sum with four subintervals. Show the computations that lead to your answer.
b. What does your answer represent in this situation?

ANSWERS TO CORRECTIVE ASSIGNMENT 7.1

