8.1 Definite Integral

NOTES

SUMMARY:

8.1 Definite Integral

PRACTICE

Graph and answer the question using a graphing calculator.

28. For $0 \le t \le 8$, a particle is moving along the *x*-axis. The particle's position, x(t), is not explicitly given. The velocity of the particle is given by $v(t) = e^{t/4} \cos(e^{t/4})$ in meters per second.

Find $\int_0^8 v(t) dt$. What does this represent?

8.1 Definite Integral

- 1. Suppose that the function f satisfies $f'(x) = 3x^2 \sin \pi x$. Then the slope of the line tangent to the graph of f at the point x = 2.
 - (A) 12
 - (B) $8 \frac{1}{\pi}$
 - (C) 7
 - (D) 12π
 - (D) 12
 - (E) 24
- 2. The graph of a piecewise linear function f, for $0 \le x \le 8$, is shown below. What is the value of $\int_0^8 f(x) dx$?

3. The function f is given by $f(x) = x^4 + 4x^3$. On which of the following intervals is f decreasing?

- (A) (-3,0)
- (B) (0,∞)
- (C) (−3,∞)
- (D) (−∞, −3)
- (E) $(-\infty, 0)$

4. If $\int_{2}^{5} f(x)dx = 12$ and $\int_{5}^{8} f(x)dx = 4$, then all of the following must be true except (A) $\int_{2}^{8} f(x)dx = 16$ (B) $\int_{2}^{5} f(x)dx - \int_{5}^{8} 3f(x)dx = 0$ (C) $\int_{5}^{2} f(x)dx = -12$ (D) $\int_{-5}^{-8} f(x)dx = -4$ (E) $\int_{2}^{6} f(x)dx + \int_{6}^{8} f(x)dx = 16$

5. $\frac{d}{dx} \tan^2(4x) =$ (A) $8 \tan(4x)$ (B) $4\sec^2(4x)$ (C) $8 \tan(4x) \sec^2(4x)$ (D) $4 \tan(4x) \sec^2(4x)$ (E) $8\sec^2(4x)$ TEST PREP

6. Determine all the points on the graph below where the first derivative of the function is 0.

- 7. A 13-foot ladder is leaning against a 20-foot vertical wall when it begins to slide down the wall. During this sliding process, the bottom of the ladder is sliding away from the bottom of the wall at a rate of $\frac{1}{2}$ foot per second. Determine the rate at which the top of the ladder is sliding down the vertical wall when the tip of the ladder is exactly 5 feet above the ground.
 - (A) -⁶/₅ feet per second
 (B) ⁵/₆ feet per second
 (C) -¹²/₁₃ feet per second
 (D) -2 feet per second
 (E) Not enough information is given to solve this problem.
- 8. The graph of g is shown below. The area of the region between g and the x-axis on the interval [0,3] is 9. The area of the region between g and the x-axis on the interval [3,5] is 2. The value of $\int_0^5 g(x) dx$ is

- 9. What is the trapezoidal approximation of $\int_0^3 e^x dx$ using n = 4 subintervals?
 - (A) 6.407
 - (B) 13.565
 - (C) 19.972
 - (D) 27.879
 - (E) 34.944