

Find the antiderivative of the following.
$f^{\prime}(x)=\sqrt[5]{x^{2}}+\frac{4}{\sqrt[4]{x^{3}}}$

$$
\begin{array}{l|l|l}
f^{\prime}(x)=\frac{1}{x} & y^{\prime}=e^{x} & \frac{d y}{d x}=\cos x
\end{array} \quad \frac{d}{d x} y=\sin x
$$

INITIAL CONDITION

Find the function f that satisfies the given condition

$$
\begin{array}{l|l}
f^{\prime}(x)=3 x^{2}-x+4 \text { and } f(2)=8 & f^{\prime}(x)=3 \sqrt{x}+3 \text { and } f(1)=4
\end{array}
$$

Find y, if $y^{\prime \prime}=\cos x$ and $y^{\prime}\left(\frac{\pi}{2}\right)=2$ and $y\left(\frac{\pi}{2}\right)=3 \pi$

Particle Motion

A particle moves along the x-axis with an acceleration of $a(t)=12 t-4$. The particle's velocity is 18 centimeters per second at $t=2$. The initial position of the particle is 8 cm . What is the position of the particle at $t=3$?

SUMMARY:

Now,
summarize
your notes
here!

Find the antiderivatives of the following.

1. $f^{\prime}(x)=4 \sqrt[3]{x^{2}}-\frac{5}{\sqrt[5]{x^{3}}}+2$
2. $\frac{d y}{d x}=x^{-2}-x^{-1}$
3. $y^{\prime}=\sin x+x^{\frac{3}{2}}$

Evaluate the indefinite integrals.
4. $\int\left(3 x+e^{x}\right) d x$
5. $\int\left(3 e^{x}+\frac{9}{x}\right) d x$
6. $\int(4-\cos x) d x$

Evaluate the definite integrals using the Fundamental Theorem of Calculus.

7.

$\int_{\pi}^{\frac{3 \pi}{2}}(2+\cos x) d x$
8.
$\int_{0}^{1}\left(e^{x}-x\right) d x$

Find the function that satisfies the given conditions.
9. $h^{\prime}(t)=8 t^{3}+5$ and $h(1)=-4$
10. $\frac{d y}{d x}=2 x+\sin x$ and $y(0)=4$

Find the function that satisfies the given conditions.

11. $f^{\prime \prime}(x)=x^{-3 / 2}$ and $f^{\prime}(4)=2$ and $f(0)=0$
12. $f^{\prime \prime}(x)=\sin x$ and $f^{\prime}(0)=1$ and $f(0)=6$

Word Problems!

13. A particle moves along the y-axis with an acceleration of $a(t)=2$ where t is time in seconds. The particle's velocity at $t=2$ is $5 \mathrm{~cm} / \mathrm{sec}$. The position of the function at $t=2$ is 10 cm . What is the position of the particle at $t=6$?
14. A ball is thrown down off of a house with a velocity of $v(t)=-32 t-8$ where t is time in seconds and v is $\mathrm{ft} / \mathrm{sec}$. The ball is 20 feet in the air at $t=1$. What is the initial height of the ball?
15. A particle moves along the y-axis with an acceleration of $a(t)=12 t-4$ with initial velocity of -10 and initial position 0 . Find the position of the function at the particle's minimum velocity.
16. The graph of f includes the point $(2,6)$ and the slope of the tangent line to f at any point x is given by the expression $3 x+4$. Find $f(-2)$.

Word Problems!

17. A coin is dropped from a 850 foot building The velocity of the coin is $v(t)=-16 t$. Find the both the position function and acceleration function.
18. A particle moves along the x-axis with a velocity of $v(t)=\sqrt[3]{t^{2}}-\frac{1}{t^{2}}$ measured in inches/second. At $t=1$ the position of the particle is 3 inches. What is the particle's position at $t=8$?
19. A particle moves along the x-axis with a velocity of $v(t)=1-\sin t$. At $t=\pi$ seconds the position of the particle is π inches. What is the position of the particle at $t=\frac{3 \pi}{2}$?
20. A particle moves along the y-axis with a velocity of $v(t)=\frac{1}{t}-\frac{t^{2}}{3}+2$. At $t=1$ seconds the position of the particle is 8 meters. Find the both the acceleration and position function.

MULTIPLE CHOICE

1. If $f^{\prime}(x)=12 x^{2}-6 x+1, f(1)=5$, then $f(0)$ equals
(A) 2
(B) 3
(C) 4
(D) -1
(E) 0
2. What is the instantaneous rate of change at $x=3$ of the function f given by $f(x)=\frac{x^{2}-2}{x+1}$?
(A) $-\frac{17}{16}$
(B) $-\frac{1}{8}$
(C) $\frac{1}{8}$
(D) $\frac{13}{16}$
(E) $\frac{17}{16}$
3. If $x^{3}+2 x^{2} y-4 y=7$, then when $x=1, \frac{d y}{d x}=$
(A) $-\frac{9}{2}$
(B) 0
(C) -8
(D) -3
(E) $\frac{7}{2}$
4. If $f^{\prime \prime}(x)=(x-1)(x+2)^{3}(x-4)^{2}$, then the graph of f has inflection points when $x=$
(A) -2 only
(B) 1 only
(C) 1 and 4 only
(D) -2 and 1 only
(E) $-2,1$, and 4 only
5. What are all values of k for which $\int_{-2}^{k} x^{5} d x=0$?
(A) -2
(B) 0
(C) 2
(D) -2 and 2
(E) $-2,0$, and 2
6. The function f is given by $f(x)=-x^{6}+x^{3}-2$. On which of the following intervals is f decreasing?
(A) $(-\infty, 0)$
(B) $\left(-\infty,-\sqrt[3]{\frac{1}{2}}\right)$
(C) $\left(0, \sqrt[3]{\frac{1}{2}}\right)$
(D) $(0, \infty)$
(E) $\left(\sqrt[3]{\frac{1}{2}}, \infty\right)$
7. If $G(x)$ is an antiderivative for $f(x)$ and $G(3)=6$, then $G(5)=$
(A) $f^{\prime}(5)$
(B) $6+f^{\prime}(5)$
(C) $\int_{3}^{5} f(t) d t$
(D) $\int_{3}^{5}(6+f(t)) d t$
(E) $6+\int_{3}^{5} f(t) d t$

FREE RESPONSE

Your score: \qquad out of 9

1. The figure above shows an aboveground swimming pool in the shape of a cylinder with a radius of 12 feet and a height of 4 feet. The pool contains 1000 cubic feet of water at time $t=0$. During the time interval $0 \leq t \leq 12$ hours, water is pumped into the pool at the rate of $P(t)$ cubic feet per hour. The table above gives values of $P(t)$ for selected values of t. During the same time interval, water is leaking from the pool at the rate $R(t)$ cubic feet per hour, where $R(t)=25 e^{-0.05 t}$. (Note: The volume V of a cylinder with radius r and height h is given by $V=\pi r^{2} h$.)
(a) Use a midpoint Riemann sum with three subintervals of equal length to approximate the total amount of water that was pumped into the pool during the time interval $0 \leq t \leq 12$ hours. Show the computations that lead to your answer.
(b) Calculate the total amount of water that leaked out of the pool during the time interval $0 \leq t \leq 12$ hours.
(c) Use the results from parts (a) and (b) to approximate the volume of water in the pool at time $t=12$ hours. Round your answer to the nearest cubic foot.
(d) Find the rate at which the volume of water in the pool is increasing at time $t=8$ hours. How fast is the water level in the pool rising at $t=8$ hours? Indicate units of measure in both answers.
