8.3 Antiderivatives

PRACTICE

[ Find the antiderivatives of the following.
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[ Evaluate the indefinite integrals.
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| Evaluate the definite integrals using the Fundamental Theorem of Calculus.
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[ Find the function that satisfies the given conditions.
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| Find the function that satisfies the given conditions.

11. f"(x) =x~%2and f'(4) = 2and £(0) = 0
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12. f""(x)=sinxand f'(0) =1and f(0) =6
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| Word Problems!

13. A particle moves along the y-axis with an
acceleration of a(t) = 2 where  is time in seconds.
The particle’s velocity at £ = 2 is 5 c/sec. The
position of the function at £ = 2 is 10cm. What is
the position of the particleatt =6 ?
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14 A ball is thrown straight up with a velocity of
v(t) = —32t — 8 where ¢1s time in seconds and v is
ft/sec. The ballis 20 feet in the airat t = 1. Whatisat
the initial height of the ball?
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15. A particle moves along the y-axis with an
ac II eration of a(t) = 12t — 4 with initial velocity
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17. A coin is dropped from a 850 foot building The
velocity of the coin is v(t) = —16t. Find the both
the position function and acceleration function.
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16. The graph of fincludes the point (2,6) and the
slope of the tangent line to fat any point x is given
by the expression 3x + 4. Find f(—2).
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18. A particle moves along the x-axis with a velocity
of (t) = Vx2— l, . Att = 1second the position of
x
the particle is 3 inches. What is the particle’s position
att =87
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19. A particle moves along the x-axis with a velocity 20. A particle moves along the y-axis with a velocity
of v(t) =1-—sint. Att = m seconds
the position of the particle is m inches. What is the
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position of the particle at t = 7"‘?

" 1 t2 -
of v(t) = s + 2. At t = 1 seconds the position

of the particle is 8 meters. Find the both the
acceleration and position function.
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The figure above shows an aboveground swimming pool in the shape of a cylinder with a radius of 12 feet and a
height of 4 feet. The pool contains 1000 cubic feet of water at time ¢ = 0. During the time interval 0 <t <12
hours, water is pumped into the pool at the rate P(#) cubic feet per hour. The table above gives values of P(t)

for selected values of . During the same time interval, water is leaking from the pool at the rate R(¢) cubic feet

per hour, where R(t) = 25¢ "%, (Note: The volume ¥ of a cylinder with radius 7 and height & is given by

v = zrlh.)

(a) Use a midpoint Riemann sum with three subintervals of equal length to approximate the total amount of water
that was pumped into the pool during the time interval 0 < ¢ < 12 hours. Show the computations that lead to

your answer.

(b) Calculate the total amount of water that leaked out of the pool during the time interval 0 < <12 hours.

(c) Use the results from parts (a) and (b) to approximate the volume of water in the pool at time ¢ = 12 hours.

Round your answer to the nearest cubic foot.

(d) Find the rate at which the volume of water in the pool is increasing at time ¢ = 8 hours. How fast is the water
level in the pool rising at = 8 hours? Indicate units of measure in both answers.

(@) j;zp(r)dr ~46.4+57 4+62- 4 =660 ft’
) L;zR(r) dt = 225.504 f°

=12 ~12
() 1000+ [ “P(t)dr — [ "R(r)dr = 1434406

Attime f =12 hours, the volume of water in the pool is
approximately 1434 ft°.

(d) ¥'(t) = P(t) - R(t)

7'(8) = P(8) — R(8) = 60 — 254 = 43.241 or 43.242 ft® /hr
v =x(12)°h
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