Calculus

- Find F'(x).

 1. $F(x) = \int_4^x \frac{1}{\sqrt{t}} dt$
- $2. F(x) = \int_x^3 t^2 dt$
- 3. $F(x) = \int_{\pi}^{x} \tan t \, dt$ 4. $F(x) = \int_{x}^{5} \frac{1}{t} dt$

- 5. $F(x) = \int_{-1}^{2x} (1 t^2) dt$
- $6. F(x) = \int_e^{e^x} \ln t \, dt$
- 7. $F(x) = \int_9^{x^4} \sqrt{t} \, dt$

- 8. $F(x) = \int_0^{x^2 x} t^2 dt$
- 9. $F(x) = \int_{-\pi}^{\cos x} 2^t dt$
- 10. $F(x) = \int_{-x}^{x} \sin^2 t \, dt$

11. $F(x) = \int_{-x}^{3x^2} t^2 dt$

12. $F(x) = \int_{x^2}^{x^4} \sqrt{t} \, dt$

13. Use the function f in the figure and the function gdefined by $g(x) = \int_0^x f(t) dt$ to answer the following questions.

b) At what x-values does g have a minimum?

d) Let h be a function defined by $h(x) = \frac{f(x)}{3x^2-1}$. Find h'(2).

14. Use the function f in the figure and the function h defined by $h(x) = \int_0^x f(t) \, dt$ to answer the following questions.

- b) At what x-values does h have a minimum?
- c) At what x-values does h have a maximum?
- d) Let g be a function defined by $g(x) = f(x)(2 x^2)$. Find g'(4).
- 15. Use the function f in the figure and the function g defined by $g(x) = \int_0^x f(t) dt$ to answer the following questions.

- a) Find g(4).
- b) At what x-values does g have a minimum?
- c) At what x-values does g have a maximum?
- d) Let h be a function defined by $h(x) = f(x^2 + 4)$. Find h'(1).

Answers to 9.1 CA #1

1. $\frac{1}{\sqrt{x}}$		2. $-x^2$	3. tan	x	4. $-\frac{1}{x}$		5. $2 - 8x^2$		6. <i>xe</i> ^x
7. 4 <i>x</i> ⁵	8. 2 <i>x</i> ⁵	$5 - 5x^4 + 4x^3 - x$	$9\sin x 2^{\cos x}$			$10. \sin^2 x + \sin^2(-x)$			11. $54x^5 + x^2$
12. $4x^5 - 2x^2$		a) $2 - 2\pi$	c) $x = 0$, x = 8 d) $\frac{24}{121}$		= 0, $z = 8$	c) $x = 6$, $x = 9$ d) -2		15. a) $2 + \frac{\pi}{2}$ b) $x = 1$, x = 6	c) $x = 0$, $x = 5$ d) -2