Recall: What are the six trig derivatives?

$$\frac{d}{dy}\sin x =$$

$$\frac{d}{dy}\csc x =$$

$$\frac{d}{dy}\cos x =$$

$$\frac{d}{dy}\sec x =$$

$$\frac{d}{dy}\tan x =$$

$$\frac{d}{dy}\cot x =$$

Trig Integrals:

$$\int \cos x \, dx = \int -\csc x \cot x \, dx =$$

$$\int \sin x \, dx = \int \sec x \tan x \, dx =$$

Preparing for u-substitution:

$$\int \cos ax \, dx =$$

Find the indefinite integral.

1.
$$\int -5\sin x \, dx$$

2.
$$\int \frac{2}{\sec x} dx$$

Evaluate each definite integral.

$$3. \quad \int_{\pi/4}^{\pi} -2\cos x \, dx$$

4.
$$\int_{\pi/4}^{3\pi/4} \sec^2 2x \, dx$$

$$\int_{-\pi/16}^{0} \sec 4x \tan 4x \, dx$$

Recall the inverse trig derivatives. Remember that $\arcsin(x)$ is the same as $\sin^{-1} x$.

Inverse Trig Derivatives:

$$\frac{d}{dx}\sin^{-1}(x) = \frac{d}{dx}\cos^{-1}(x) =$$

$$\frac{d}{dx}\sec^{-1}(x) = \frac{d}{dx}\csc^{-1}(x) =$$

$$\frac{d}{dx}\tan^{-1}(x) = \frac{d}{dx}\cot^{-1}(x) =$$

Taking the integral is just going the other direction!

Find the indefinite integral.

$$6. \quad \int -\frac{1}{\sqrt{1-x^2}} dx$$

$$7. \int \frac{3}{9x^2 + 1} dx$$

$$8. \int -\frac{1}{|x|\sqrt{4x^2-1}}dx$$

9.
$$\int \frac{20x^3}{\sqrt{1-25x^8}} dx$$

In this practice set you will find definite integrals, indefinite integrals, AND derivatives.

1.
$$\int (\cos x - 5\sin x) \, dx$$

2.
$$\int \sec x (\sec x + \tan x) dx$$

$$\int_{\pi/4}^{\pi} 2\cos x \, dx$$

4.
$$\int_{-3\pi/4}^{-\pi/2} \sin x \, dx$$

$$\int_{\pi/9}^{2\pi/9} 3\csc^2 3x \, dx$$

$$\int_{\pi/6}^{\pi/4} \csc 2x \cot 2x \, dx$$

7.
$$\int \frac{3}{|x|\sqrt{36x^6-1}} dx$$

$$8. \quad \int -\frac{2}{4x^2+1} dx$$

9.
$$\frac{d}{dx}\sin 5x$$

10.
$$\frac{d}{dx}\sec^2 2x$$

11.
$$\int (\sec^2 x + x) \, dx$$

$$12. \quad \int \frac{\sin x}{\cos^2 x} \, dx$$

13. $\int_0^{\pi} \sec x \tan x dx$	$14. \int_{-\pi/4}^{\pi} \sin 2x \ dx$	15. $\int \frac{20x^4}{\sqrt{1 - 16x^{10}}} dx$
$16. \int \frac{\cos^3 x + 4}{\cos^2 x} dx$	$17. \int x - \frac{2}{\cos^2 x} dx$	$18. \int \frac{36x^3}{1+81x^8} dx$
$\int -\cos^2 x$	$\int x \cos^2 x dx$	$\int \overline{1 + 81x^8}^{ux}$
$19. \int \frac{1}{\csc x} dx$	$\frac{d}{dx}\cos 3x$	21. $\int_{\pi/2}^{\pi/2} \csc(\cot(\sec x)) dx$
$\frac{d}{dx}\sec x \tan x$	23. $\int_{\pi/4}^{5\pi/4} \sec^2 x$	x dx
	$J^{n}/4$	

24.
$$\int \frac{\sin 2x}{\cos x} dx$$
Hint: $\sin 2x = 2 \sin x \cos x$

$$\int_{\pi}^{\frac{\pi}{2}} 3\sin 5x \, dx$$

Test Prep

1. What is the x-coordinate of the point of inflection on the graph of $y = \frac{1}{10}x^5 + \frac{1}{2}x^4 - \frac{3}{10}$?

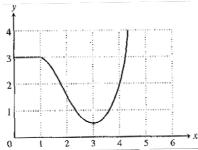
$$(A) -4$$

(B)
$$-3$$

(C)
$$-1$$

(D)
$$-\frac{3}{10}$$

$$(E)$$
 0


2. If f, is a linear function and 0 < a < b, then $\int_a^b f''(x) dx =$

(C)
$$\frac{ab}{2}$$

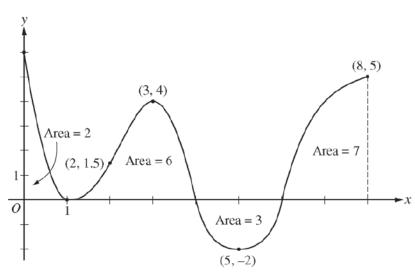
(D)
$$m(a-b)$$

(E)
$$\frac{a^2-b^2}{2}$$

3. The graph of f is shown. If $\int_1^4 f(x) dx = 3.8$ and F'(x) = f(x), then F(4) - F(0) =

- (A) 0.8
- (B) 2.8
- (C) 4.8
- (D) 6.8
- (E) 8.4

4. At time $t \ge 0$, the acceleration of a particle that is moving along the x-axis is $a(t) = t + 2 \sin t$. At t = 0, the velocity of the particle is -4. For what value of t will the velocity of the particle be zero?



- (A) 0
- (B) 1.20
- (C) 1.78
- (D) 2.31
- (E) 3.87

Your score: _____ out of 9

FREE RESPONSE

2013 AB4

Graph of f'

The figure above shows the graph of f', the derivative of a twice-differentiable function f, on the closed interval $0 \le x \le 8$. The graph of f' has horizontal tangent lines at x = 1, x = 3, and x = 5. The areas of the regions between the graph of f' and the x-axis are labeled in the figure. The function f is defined for all real numbers and satisfies f(8) = 4.

- (a) Find all values of x on the open interval 0 < x < 8 for which the function f has a local minimum. Justify your answer.
- (b) Determine the absolute minimum value of f on the closed interval $0 \le x \le 8$. Justify your answer.
- (c) On what open intervals contained in 0 < x < 8 is the graph of f both concave down and increasing? Explain your reasoning.
- (d) The function g is defined by $g(x) = (f(x))^3$. If $f(3) = \frac{5}{2}$, find the slope of the line tangent to the graph of g at x = 3.