9.4 Net Change Calculus Na	ame: CA #1		
1. Mr. Sullivan can paint his tricycles at a rate of $r(t) = 50 - \frac{t}{2}$ square inches per minute, where t is the number of hours since he started painting. a. Find $\int_0^5 r(t) dt$	2. Mr. Brust leaves for a bike ride at 10:00 a.m. (time $t = 0$) and rides with velocity $v(t) = 20 - \frac{t}{5}$ miles per hour, where t is the number of hours since he started riding a. Find $\int_{1}^{2} r(t) dt$		
b. Explain the meaning of your answer to part <i>a</i> in the context of this problem.	b. Explain the meaning of your answer to part <i>a</i> in the context of this problem.		
3. A particle's velocity along the <i>x</i> -axis is given by $v(t) = 5 \cos t$. (a) Find the particle's displacement on the interval $0 \le t \le \frac{3\pi}{2}$.			

- (b) If s(0) = 3, what is the particles position at $t = \frac{3\pi}{2}$?
- 4. A particle's velocity is given by v(t) = 20 8t, where t is measured in weeks, v is measured in inches per week, and s(t) represents the particle's position.
 (a) If s(0) = 3, what is the value of s(3)?
 - (b) What is the net change in distance over the first 10 weeks?
 - (c) What is the total distance traveled by the particle during the first 10 weeks? Show the set up AND your work.
- 5. A particle's velocity is given by v(t) = e^{sin t} cos t, where t is measured in months, v is measured in yards per month, and s(t) represents the particle's position.
 (a) If s(0) = 5, what is the value of s(2π)?
 - (b) What is the net change in distance over the first 8 months?
 - (c) What is the total distance traveled by the particle during the first 8 months? Show the set up.

6. $f'(x) = \sin x$ and $f(0) = f(\pi)$??	= 2. What is the value of	7. $f'(x) = x^2 - 2x$ and $f(-3) = 4$. What is the value of $f(1)$?		
8. $f'(x) = 6 - x$ and $f(5)$ f(2)?		value of <i>f</i> (5)?	and $f(1) = 2$. What is the	
x-axis over a 5-second	hows the velocity of an obje period. d 2 meters to the left, where			
b) If the objected started 2 meters to the left, where is the object after 5 seconds?				
c) Find the total distance traveled by the object over the 5-second period.				
11. The graph to the right shows the velocity of an object moving along the x-axis over a 5-second period. a) If the object started 10 meters to the right, where is the object after 3 seconds? $\frac{3^{\gamma}}{2}$				
b) Find the total distan period	ce traveled by the object over	3		
	Answers	to 9.4 CA #1		
1a. 243.751b. During the first 5 hours, Sully painted 243.75 square inches.	2a. 19.7 2b. During the 2 nd hour, Brust rode 19.7 miles.	3a. 5 units to the left.3b. 2 units to the left.	4a. 27 4b. –200 inches 4c. 250 inches	
		40 4 1 1 1 1 0		

10a. 1 meter to the left.

10b. 1 meter to the left.

10c. 2 meters.

7. $21\frac{1}{3}$ 8. $-\frac{29}{2}$

9. 146

11a. 13 meters to the right.

11b. 8 meters

5a. 5

5b. 1.6895 yards

5c. 6.4478 yards

6.4