## TEST PREP

1. What are the $x$-coordinate(s) of the points of inflection for the graph of $f(x)=\sin ^{2} x$ on the closed interval $[0, \pi]$ ?
(A) $x=\frac{3 \pi}{4}$ only
(B) $x=\frac{\pi}{4}, x=\frac{\pi}{2}$, and $x=\frac{3 \pi}{4}$
(C) $x=\frac{\pi}{4}$ and $x=\frac{3 \pi}{4}$
(D) $x=\frac{\pi}{2}$ only
(E) $x=\frac{\pi}{4}$ only
2. The function defined by $g(x)=4 x^{3}-3 x^{2}$ for all values of $x$ has a relative maximum at $x=$
(A) $-\frac{1}{2}$
(B) 0
(C) $\frac{1}{2}$
(D) $\frac{1}{4}$
(E) 1
3. The graph of the derivative of function $f$ is shown below. At what value of $x$ does function $f$ have a relative maximum?
(A) 1
(B) -1
(C) 0
(D) -2
(E) 3

4. The function $g$ is defined by the equation $g(x)=6 x^{5}-10 x^{3}$. Determine the values of $x$ for which the graph of function $g$ is concaved upwards.
(A) $x>\frac{1}{2}$
(B) $-\frac{\sqrt{2}}{2}<x<0$ or $x>\frac{\sqrt{2}}{2}$
(C) $-\frac{1}{2}<x<0$ or $x>\frac{1}{2}$
(D) $-\frac{1}{2}<x<\frac{1}{2}$
(E) $-\frac{\sqrt{2}}{2}<x<\frac{\sqrt{2}}{2}$
5. For what values of $k$ will $f(x)=x^{2}+\frac{k}{x}$ have a relative minimum at $x=2$ ?
(A) -2
(B) 2
(C) 8
(D) -16
(E) 16
6. The graph shown below shows the derivative $f^{\prime}$ of the function $f$. At what value(s) of $x$ does function $f$ have a point of inflection?
(A) $c$ and $e$ only
(B) $a, b, c$, and $d$ only
(C) $a$ and $c$ only
(D) $b$ and $d$ only
(E) $a$ only

7. An equation of the line tangent to the graph of $f(x)=2 x^{3}-3 x^{2}$ at its point of inflection is
(A) $3 x+2 y=5$
(B) $6 x+4 y=1$
(C) $6 x+4 y=5$
(D) $3 x+2 y=1$
(E) $6 x-4 y=1$
8. The graph of the function $y=f(x)$ is shown below. On which of the following intervals is $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)>0$ ?
(A) I, II, and III
I. $\boldsymbol{c}<\boldsymbol{x}<\boldsymbol{d}$
(B) II and III only
II. $a<x<b$
(C) II only
III. $b<\boldsymbol{x}<\boldsymbol{c}$
(D) I only
(E) III only

9. The graph of the derivative of function $f$ is shown below. Where on the interval $[-2,3]$ is function $f$ decreasing?
(A) $[-2,3]$
(B) $[-1,1]$
(C) $[1,3]$
(D) $[-2,0]$
(E) $[0,3]$

10. For what interval is $f(x)=\frac{1}{1-x^{2}}$ increasing?
(A) Function $f$ increases for all real values of $x$
(B) $(-\infty,-1) \cup(-1,0]$
(C) $[0,1) \cup(1, \infty)$
(D) $(-1,1)$
(E) $(-\infty,-1) \cup(1, \infty)$
11. The table below shows various values for the derivatives of differentiable functions $f, g$, and $h$. Which of these functions must have a relative maximum on the open interval $(-3,3)$ ?
(A) $g$ only
(B) $f, g$, and $h$
(C) $g$ and $h$ only
(D) $h$ only
(E) fonly
12. If $\lim _{h \rightarrow 0} \frac{f(-2+h)-f(-2)}{h}=2.637$,then the graph of function $f$ at $x=-2$ is
(A) Decreasing
(B) Concave downwards
(C) Increasing
(D) Concave upwards
(E) Stationary
13. The graph of $y=f(x)$ is shown below. If $f$ is twice-differentiable, which of the following is true?
(A) $f(x)<0, f^{\prime}(x)<0, f^{\prime \prime}(x)<0$
(B) $f(x)>0, f^{\prime}(x)<0, f^{\prime \prime}(x)>0$
(C) $f(x)>0, f^{\prime}(x)>0, f^{\prime \prime}(x)>0$
(D) $f(x)>0, f^{\prime}(x)<0, f^{\prime \prime}(x)<0$
(E) $f(x)>0, f^{\prime}(x)>0, f^{\prime \prime}(x)<0$

