Write your questions and thoughts here!

1. For the function $f(x)=2 x^{3}+4 x^{2}+2 x$, use a table to help you organize and draw conclusions.

x	\square			
$f^{\prime}(x)$	\square		x	
:---:	:---			
$f^{\prime \prime}(x)$	\square			

When is f both concave up and decreasing?

x	
$f^{\prime}(x)$	
$f^{\prime \prime}(x)$	

Speeding up or slowing down?

An object is speeding up if have the same sign.
An object is slowing down if have different signs.
2. A particle is moving along the x-axis with position function $x(t)=\frac{1}{3} t^{3}-4 t^{2}+12 t$.

Find the velocity and acceleration functions. Describe the motion of the particle.
3. For the given function $f(x), f^{\prime}(x)$ and $f^{\prime \prime}(x)$ do not change signs. A table of values for $f(x)$ is given in the table below.

x	$f(x)$
0	1
1	2
2	4
3	7

a. Is $f(x)$ increasing or decreasing?
b. Is $f(x)$ concave up or concave down?
5.9 Connecting $\boldsymbol{f}, \boldsymbol{f}^{\prime}$, and $\boldsymbol{f}^{\prime \prime}$

Calculus

Practice

1. A particle's position along the x-axis is measured by $x(t)=\frac{1}{3} t^{3}-3 t^{2}+8 t+1$ where $t>0$. Find the intervals where the particle is speeding up. Find intervals where the particle is slowing down.
2. A particle's position along the y-axis is measured by $y(t)=t-3(t-4)^{\frac{1}{3}}$ where $t>0$. Find the intervals where the particle is speeding up. Find intervals where the particle is slowing down.

For each table, selected values of \boldsymbol{x} and $f(x)$ are given. Assume that $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ do not change signs. Answer the questions for each table.
3.

x	$f(x)$
4	-5
5	-8
6	-12
7	-17

a. Is $f(x)$ increasing or decreasing?
b. Is $f(x)$ concave up or concave down?

x	$f(x)$
-3	-2
-2	3
-1	7
0	10

a. Is $f(x)$ increasing or decreasing?
b. Is $f(x)$ concave up or concave down?
5.

x	$f(x)$
2	3
3	0
4	-2
5	-3

a. Is $f(x)$ increasing or decreasing?
b. Is $f(x)$ concave up or concave down?
6. Given the function $g(x)=-x^{4}+2 x^{2}-1$, find the interval(s) when g is concave up and increasing at the same time.
7. Given the function $h(x)=x^{3}-2 x^{2}+x$, find the interval(s) when h is concave up and decreasing at the same time.
8. Calculator active problem. Let h be the function given by $h(t)=70-15 \cos \left(\frac{\pi t}{3}\right)+5 \sin \left(\frac{\pi t}{4}\right)$ for $0 \leq t \leq 5$. At what value of t is h increasing most rapidly?
(A) 0.266
(B) 1.343
(C) 2.851
(D) 4.439
(E) 5.000
9.

x	-5	-4	-2	0	3
$f^{\prime}(x)$	-8	-10	-7	-4	-6

Calculator active problem. Let f be a polynomial function with values of $f^{\prime}(x)$ at selected values of x given in the table above. Which of the following must be true for $-5<x<3$?
(A) The graph of f has at least two points of inflection.
(B) The graph of f is concave down.
(C) f is decreasing.
(D) $\quad f$ has at least two relative extrema.
(E) f has no critical points.
10. In the $x y$-plane, the graph of the twice-differentiable function $y=f(x)$ is concave down on the open interval $(1,3)$ and is tangent to the line $y=4 x+3$ at $x=2$. Which of the following statements must be true about the derivative of f ?
(A) $f^{\prime}(x)$ is constant on the interval $(2,2.1)$.
(B) $f^{\prime}(x)>0$ on the interval $(2,2.1)$.
(C) $f^{\prime}(x)<0$ on the interval $(2,2.1)$.
(D) $f^{\prime}(x) \geq 4$ on the interval $(2,2.1)$.
(E) $f^{\prime}(x) \leq 4$ on the interval $(2,2.1)$.

