

3. For the given function f(x), f'(x) and f''(x) do not change signs. A table of values for f(x) is given in the table below.

x	f(x)
0	1
1	2
2	4
3	7

- a. Is f(x) increasing or decreasing?
- b. Is f(x) concave up or concave down?

5.9 Connecting f, f', and f'' Calculus

Practice

Calculus 1. A particle's position along the *x*-axis is measured by $x(t) = \frac{1}{3}t^3 - 3t^2 + 8t + 1$ where t > 0. Find the intervals where the particle is speeding up. Find intervals where the particle is slowing down.

2. A particle's position along the y-axis is measured by $y(t) = t - 3(t-4)^{\frac{1}{3}}$ where t > 0. Find the intervals where the particle is speeding up. Find intervals where the particle is slowing down.

For each table, selected values of x and f(x) are given. Assume that f'(x) and f''(x) do not change signs. Answer the questions for each table.

3.		4.	5.			
	$\begin{array}{c c} x & f(x) \\ \hline \end{array}$	x f(x)	$\begin{array}{c c} x & f(x) \\ \hline \end{array}$			
	4 -5	-3 -2	2 3			
	5 -8	-2 3	3 0			
	6 -12	-1 7	4 -2			
	7 -17	0 10	5 -3			
	, 1,	<u> </u>	0 0			
a.	Is $f(x)$ increasing or decreasing?	a. Is $f(x)$ increasing or decreasing?	a. Is $f(x)$ increasing or decreasing?			
b.	Is $f(x)$ concave up or concave down?	b. Is $f(x)$ concave up or concave down?	b. Is $f(x)$ concave up or concave down?			

6. Given the function $g(x) = -x^4 + 2x^2 - 1$, find the interval(s) when g is concave up and increasing at the same time.

7. Given the function $h(x) = x^3 - 2x^2 + x$, find the interval(s) when h is concave up and decreasing at the same time.

5.9 Connecting f, f', and f''

- **Test Prep**
- 8. Calculator active problem. Let h be the function given by $h(t) = 70 15 \cos\left(\frac{\pi t}{3}\right) + 5 \sin\left(\frac{\pi t}{4}\right)$ for $0 \le t \le 5$. At what value of t is h increasing most rapidly?

(A) 0	.266	(B) 1	1.343	(C)	2.851	(D)	4.439	(E)	5.000

x	-5	-4	-2	0	3
f'(x)	-8	-10	-7	-4	-6

Calculator active problem. Let f be a polynomial function with values of f'(x) at selected values of x given in the table above. Which of the following must be true for -5 < x < 3?

- (A) The graph of f has at least two points of inflection.
- (B) The graph of f is concave down.
- (C) f is decreasing.

9.

- (D) f has at least two relative extrema.
- (E) f has no critical points.
- 10. In the *xy*-plane, the graph of the twice-differentiable function y = f(x) is concave down on the open interval (1, 3) and is tangent to the line y = 4x + 3 at x = 2. Which of the following statements must be true about the derivative of f?
 - (A) f'(x) is constant on the interval (2, 2.1).
 - (B) f'(x) > 0 on the interval (2, 2.1).
 - (C) f'(x) < 0 on the interval (2, 2.1).
 - (D) $f'(x) \ge 4$ on the interval (2, 2.1).
 - (E) $f'(x) \le 4$ on the interval (2, 2.1).