1.10 Types of Discontinuities

Calculus

Solutions

Practice

For each function identify the type of each discontinuity and where it is located.

$$1. \quad f(x) = \frac{x}{x+1} = \mathbf{0}$$

2.
$$f(x) = \frac{x^2}{x^2 + 3x} = \frac{2}{(x^2 + 3)}$$

hole at
$$X=0$$

V.A. at $X=-3$

3.
$$f(x) = x^3 - 4x$$

Continuous function

(no discontinuities)

4.
$$f(x) = \frac{x^2 + 2x - 3}{x + 3}$$

hole at X=-3

5.
$$f(x) = \frac{x+2}{x^2-2x-8}$$

hole at X=-2 V.A at X=4

6.
$$f(x) = \sec 2x$$
 for

$$\int_{\cos 2x}^{0 \le x \le 2\pi} V.A. \text{ at}$$

7.
$$f(x) = \frac{x-5}{x^2-7x+10} = \frac{x-5}{(x-1)(x-1)}$$
 8. $f(x) = \frac{2x}{2x-5} = 0$

hole at X=5

8.
$$f(x) = \frac{2x}{2x - 5} = 0$$

9.
$$f(x) = \frac{4x+5}{3}$$

Continuous

Function

10.
$$f(x) = \frac{x-1}{x^2+3x-4}$$

$$\frac{X-1}{(x-1)(x+4)}$$

hole at
$$x=1$$

V.A. at $x=-4$

11.
$$f(x) = \frac{x^2 - 16}{x - 4}$$

12.
$$f(x) = \csc\left(\frac{x}{2}\right)$$
 for

$$\frac{0 \le x \le 2\pi}{\text{Sin}(x) \longrightarrow 0} \text{ V.A. at}$$

13. The graph of the function f(x) is shown to the right:

Which of the following statements is true about f?

- X I. f is undefined at x = 1.
- \times II. f is defined but not continuous at x = 2.
- \times III. f is defined and continuous at x = 3.

- (A) Only I
- (B) Only II
- (C) I and II
- (D) I and III
- (E) None of the statements are true.

Questions 14 through 16 are based on the function f(x) shown in the graph on the right.

14. The function f(x) has a removable discontinuity at:

- (A) x = -2 only
- (B) x = 0 only

(C) x = 1 only

- (D) x = -2 and x = 0 only
- (E) f(x) has no removable discontinuities.

15. On what intervals is f(x) continuous?

(A) [-3, -2] (] -2, 0] (]0, 2.5]

- (B) $[-3, -2] \cup (-2, 0] \cup (0, 2.5]$
- (C) $[-3, -2] \cup (-2, 0] \cup (0, 2.5]$
- (D) $[-3, -2] \cup [-2, 0] \cup (0, 2.5]$
- (E) $[-3, -2] \cup (-2, 0] \cup (0, 1) \cup (1, 2.5]$
- 16. The function has a jump discontinuity at:

- (A) x = -2 only
- (B) x = 0 only

(C) x = 1 only

- (D) x = -2 and x = 0 only
- (E) f(x) has no jump discontinuities.