Calculus

Write your questions and thoughts here!

Horizontal Asymptotes: (End-behavior)

What does the *y*-value approach as the *x*-value approaches negative infinity AND positive infinity? Does it approach a specific number, or is it growing without bound?

	for Horizontal Asymptotes grows faster means	not as big duper BIG number! =
If the numerat	or and denominator grow	fast, then you have $\frac{BIG \text{ number}!}{BIG \text{ number}!} =$
If the	grows faster than the d	enominator, then you have $\frac{\text{BIG number!}}{\text{not as big}} =$

First, you need to recognize which functions grow faster as *x*-values get larger and larger.

Rank Fastest to Slowest	f(x)	<i>x</i> = 1	<i>x</i> = 10	<i>x</i> = 100	<i>x</i> = 1000
	<i>x</i> ²	1	100	10,000	106
	<i>x</i> ³	1	1,000	10 ⁶	10 ⁹
	<i>x</i> ¹⁰	1	1010	10 ²⁰	10 ³⁰
	2 ^{<i>x</i>}	2	1,024	1.26×10^{30}	1.07×10^{301}
	<i>e</i> ^{<i>x</i>}	2.718	22,026	2.69×10^{43}	REALLY BIG
	4 ^{<i>x</i>}	4	1.05×10^{6}	1.6×10^{60}	SUPER-DUPER BIG
	$\ln x$	0	2.303	4.605	6.908

Find the horizontal asymptote(s) of each function.			
4. $y = \frac{x^2 + 4}{3x - 5}$	5. $y = \frac{x+4}{3x-5}$	6. $y = \frac{x+4}{3x^2-5}$	7. $f(x) = \frac{(x+5)(x-2)}{(4x-3)^2}$
8. $y = \frac{\sqrt{4x^2 + x - 2}}{3x - 1}$	9. $y = \frac{\sqrt{4x^4 + x - 2}}{3x^2 - 1}$	$\frac{\text{Evalua}}{10. \lim_{x \to \infty} -4e^{\frac{1}{x}}}$	ate the limit. 11. $\lim_{x \to \infty} 5e^{-x}$

our questions	Trig Functio	ns' Horizontal Asympt	otes:	
noughts here!	Evaluate the			
•	12. $\lim_{x \to -\infty} \frac{\sin x}{x}$	$\frac{x}{x} = \frac{13. \lim_{x \to \infty} -3\cos(x)}{x}$	$\frac{1}{x}$ 14. $\lim_{x \to \infty} \sin x$	15. $\lim_{x \to \infty} 5x \cos x$
	its at Infinity	and Horizontal Asym	ptotes	Practic
Calculus	all havizantal ass	mototos of each function		
		mptotes of each function. $(2x+5)$	5)(2-6x)	$(5x-1)(x^2+4)$
1. $f(x)$	$=\frac{(2x-4)(3x+1)}{(2x-7)^2}$	2. $f(x) = \frac{(2x+5)}{(3x+5)}$	$\frac{1}{(x-2)^2}$ 3. $f(x)$	$F) = \frac{(5x-1)(x^2+4)}{(5x+1)^2}$
	$\sqrt{25r^4+2r}$	$\sqrt{7r^6+3r^2+r}$	$\sqrt{9r^8-2r^3-6r}$	7 6(x) 3x
4. $f(x) =$	$=\frac{\sqrt{25x^4+2x}}{x^2}$	5. $f(x) = \frac{7x^{3}+6x^{2}x^{3}}{x^{3}+4x^{2}}$	6. $f(x) = \frac{\sqrt{9x^8 - 2x^3 - 6x}}{2x^4 - 10x} +$	3 /. $f(x) = \frac{1}{\sqrt{9x^2 - 1}}$
	each limit.	2		
8. $\lim_{x \to \infty} \frac{1}{x^2}$	-x+2 $x^{2}+2x+2$	9. $\lim_{x \to \infty} \left(\sin \frac{1}{x} - \frac{6x^2 + 2x}{3x^2} \right)$	10. $\lim_{x \to \infty} \left(5 \cos \frac{1}{x} \right)$	11. $\lim_{x \to \infty} \frac{x^7}{4^x} - 5$
12. $\lim_{x \to \infty} 1$	$3^{-x} + 2$	13. $\lim_{x \to \infty} -3x \cos x$	14. $\lim_{x \to \infty} 2x \sin x$	15. $\lim_{x \to \infty} \frac{9x^4 + 4x^3 + 3}{x^7 + 2x^4 + 2x^3}$
16. lim	$\frac{3x^2-5x+11}{x^2-2x}$	17. $\lim_{x \to \infty} \cos\left(\frac{2x - \pi x^2}{x^2}\right)$	18. $\lim_{x \to \infty} \left(\frac{\sin x}{x} - 4 \right)$	19. $\lim_{x \to \infty} \frac{-x^4 - 3x^2 - 8}{5x^4 + 7x + 13}$
$x \rightarrow - \alpha$	σ <i>π</i> −2 <i>π</i>			x→∞ 5x · + / x + 15
	$r^{3}-7r^{2}+8$	21. $\lim x^2 2^{-x}$	e ⁷	$3r^2-5r^7+6$
20. $\lim_{x \to \infty} \frac{1}{x}$	$\frac{1}{x^2+7x-2}$	$\sum_{x \to \infty} x^{-2} x^{-1}$	22. $\lim_{x \to \infty} \frac{e^x}{9^x}$	23. $\lim_{x \to -\infty} \frac{3x^2 - 5x^7 + 6}{x^7 - 15x^4}$

24.
$$\lim_{x \to \infty} \frac{2x^4 + 3x^2 + 10}{5x^2 + 6x - 1}$$
25.
$$\lim_{x \to \infty} \left(\frac{\sin x}{x} + 2\right)$$
26.
$$\lim_{x \to \infty} \cos\left(\frac{x^5}{e^x}\right) + 4$$
27.
$$\lim_{x \to \infty} \frac{3x^6 - 5x^3 + 6}{x^3 + x^6 - 2x^4}$$
28.
$$\lim_{x \to \infty} \sin(2x)$$
29.
$$\lim_{x \to \infty} \cos\left(\frac{\pi x^2 + \frac{\sqrt{2}}{2}x}{5 - 2x^2}\right)$$
30.
$$\lim_{x \to \infty} \cos\left(\frac{\sqrt{2}}{x^2 - x^3 + 2}\right)$$
14.15 Limits at Infinity and Horizontal Asymptotes
Test Prep

31. Which of the following functions grows the fastest?

(A)
$$a(u) = \left(\frac{1}{2}\right)^{u}$$
 (B) $b(u) = u^{100} + u^{99}$ (C) $c(u) = 4^{u}$
(D) $d(u) = 200e^{u}$ (E) $e(u) = 3^{u} + u^{3}$

32. Suppose that $g(x) = \sin^2 x \sqrt{x^6 + 4}$, and $\lim_{x \to \infty} \frac{g(x)}{f(x)} = 0$. Which of the following functions could be *f*?

(A) x (B) x^2 (C) x^3 (D) x^4 (E) $\ln x$

33. Which of the following statements are true for the function $f(x) = \frac{2x^3 + 3x + 1}{2^x}$

- I. f(x) has a horizontal asymptote of y = 1
- II. f(x) has a horizontal asymptote of y = 0
- III. f(x) has a vertical asymptote of x = 0

(A) I only (B) II only (C) III only (D) I and III only (E) II and III only

34. Which of the following functions has both a vertical and horizontal asymptote?

(A)
$$f(x) = \frac{1}{1+e^{-x}}$$
 (B) $f(x) = \tan x$ (C) $f(x) = \frac{x}{x^{2}+2}$
(D) $f(x) = \frac{x}{x^{2}-2}$ (E) $f(x) = \frac{x^{2}+2}{x}$

35. The function $f(x) = \begin{cases} \frac{x^2 + 2x + 3}{x^2 - 1}, & x \ge 0\\ \frac{x}{e^x}, & x < 0 \end{cases}$ has which of the following asymptotes?

(A)
$$y = 0$$
 only.
(B) $y = 1$ only.
(C) $y = 1$, $x = 1$ only.
(D) $y = 1$, $x = \pm 1$ only.
(E) $y = 0$, $y = 1$, $x = \pm 1$.

36. If the function $f(x) = \frac{-ax^3 + bx^2 + cx + d}{e^{-x} - wx^3 + w}$ has a horizontal asymptote of y = 2 and a vertical asymptote of x = 0, then w - a =

(A)
$$-1$$
 (B) 0 (C) 1 (D) ∞ (E) The limit does not exist.

37. What are all horizontal asymptotes of the graph of $y = \frac{5+2^x}{1-2^x}$ in the *xy*-plane?

(A)
$$y = -1$$
 only
(B) $y = 0$ only
(C) $y = 5$ only
(D) $y = -1$ and $y = 0$
(E) $y = -1$ and $y = 5$