Intermediate Value Theorem (for continuous functions) - IVT

Conclusion: "According to the IVT, there is a value such that $f()=$ \qquad and $\leq \leq$."
Below is a table of values for a continuous function f.

x	0	3	4	8	9
$f(x)$	1	-5	3	7	-1

1. On the interval $0 \leq x \leq 9$ what is the minimum number of zeros?
2. On the interval $4 \leq x \leq 9$, what is the fewest possible times $f(x)=1$?
3. On the interval $0 \leq x \leq 4$, must there be a value of x for which $f(x)=2$? Explain.
4. On the interval $4 \leq x \leq 8$, could there be a value of x for which $f(x)=-2$? Explain.
5. Will the function $f(x)=x^{2}-x+1$ ever equal 8 on the interval $[-1,5]$? Explain.

Below is a table of values for a continuous function f.

x	-5	1	3	8	14
$f(x)$	7	40	21	75	-100

1. On the interval $-5 \leq x \leq 1$, must there be a value of x for which $f(x)=30$? Explain.
2. On the interval $3 \leq x \leq 8$, could there be a value of x for which $f(x)=100$? Explain.
3. On the interval $-5 \leq x \leq 14$ what is the minimum number of zeros?
4. For $1 \leq x \leq 14$, what is the fewest possible number of times $f(x)=20$?
5. For $1 \leq x \leq 8$, what is the fewest possible number of times $f(x)=7$?

Below is a table of values for a continuous function h.

x	-7	-2	1	4	11
$h(x)$	2	-5	6	-1	10

6. For $-7 \leq x \leq 1$, what is the fewest possible number of times $f(x)=3$?
7. On the interval $4 \leq x \leq 11$, must there be a value of x for which $f(x)=-2$? Explain.
8. For $-2 \leq x \leq 4$, what is the fewest possible number of times $f(x)=2$?
9. On the interval $1 \leq x \leq 11$, could there be a value of x for which $f(x)=-2$? Explain.
10. On the interval $-7 \leq x \leq 11$ what is the minimum number of zeros?

Below is a table of values for a continuous function g.

x	0	2	15	32	50
$g(x)$	-1	10	17	-10	8

11. On the interval $2 \leq x \leq 15$, must there be a value of x for which $g(x)=-3$? Explain.
12. On the interval $15 \leq x \leq 32$, must there be a value of x for which $g(x)=11$? Explain.
13. What is the minimum number of zeros g must have on the interval $15 \leq x \leq 50$?
14. What is the minimum number of zeros g must have on the interval $0 \leq x \leq 50$?
15. For $15 \leq x \leq 50$, what is the fewest possible number of times $g(x)=1$?

Use the Intermediate Value Theorem to answer each problem.

16. If $f(x)=3-x^{2}$, will $f(x)=0$ on the interval $[-2,1]$? Explain.
17. If $\mathrm{g}(x)=\frac{1}{x}$, will $g(x)=-1$ on the interval [2,5]? Explain.
18. Calculator active. If $h(x)=\ln (2 x+1)$, will $h(x)=3$ on the interval $[2,20]$? Explain.
19. If $f(t)=3 t^{2}-10 t+2$, will $f(x)=1$ on the interval $[-1,3]$? Explain.
20. Let f be a continuous function such that $f(1)=7$ and $f(7)=1$. Let g be the function given by $g(x)=f(x)-x$. Explain why there must be a value c for $1<c<7$ such that $g(c)=0$.
21. The function f is continuous on the closed interval $[1,3]$ and has values that are given in the table below.

x	1	2	3
$f(x)$	2	k	3

The equation $g(x)=1$ must have at least two intersections with f in the interval $[1,3]$ if $k=$
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
22. Suppose f is continuous on the closed interval $[0,4]$ and suppose $f(0)=1, f(1)=2, f(2)=0$, $f(3)=-3, f(4)=3$. Which of the following statements about the zeros of f on $[0,4]$ is always true?
(A) f has exactly one zero on $[0,4]$.
(B) f has more than one zero on $[0,4]$.
(C) f has more than two zeros on $[0,4]$.
(D) f has exactly two zeros on $[0,4]$.
(E) None of the statements above is true.

