
Calculus

1.16 Intermediate Value Theorem (IVT)

Notes

Write your questions and thoughts here!

Intermediate Value Theorem (for continuous functions) - IVT

Justification with the IVT.

- 1. The function f(x) is continuous on an interval [].
- 2. f() < f() or f() > f().
- 3. f() is between f() and f().

Conclusion: "According to the IVT, there is a value such that $f() = \underline{\hspace{1cm}}$ and $\leq \leq .$ "

Below is a table of values for a continuous function f.

zere w is a chere of various for a continuous function j					
\boldsymbol{x}	0	3	4	8	9
f(x)	1	- 5	3	7	-1

- 1. On the interval $0 \le x \le 9$ what is the minimum number of zeros?
- 2. On the interval $4 \le x \le 9$, what is the fewest possible times f(x) = 1?
- 3. On the interval $0 \le x \le 4$, must there be a value of x for which f(x) = 2? Explain.

- 4. On the interval $4 \le x \le 8$, *could* there be a value of x for which f(x) = -2? Explain.
- 5. Will the function $f(x) = x^2 x + 1$ ever equal 8 on the interval [-1, 5]? Explain.

1.16 Intermediate Value Theorem (IVT)

Calculus

Practice

Below is a table of values for a continuous function f .					
x	- 5	1	3	8	14
f(x)	7	40	21	75	-100

1. On the interval $-5 \le x \le 1$, must there be a value of x for which f(x) = 30? Explain.

- 2. On the interval $3 \le x \le 8$, *could* there be a value of x for which f(x) = 100? Explain.
- 3. On the interval $-5 \le x \le 14$ what is the minimum number of zeros?
- 4. For $1 \le x \le 14$, what is the fewest possible number of times f(x) = 20?
- 5. For $1 \le x \le 8$, what is the fewest possible number of times f(x) = 7?

_	Below is a table of values for a continuous function h .					
Ī	x	- 7	-2	1	4	11
Į	h(x)	2	- 5	6	-1	10

- 6. For $-7 \le x \le 1$, what is the fewest possible number of times f(x) = 3?
- 7. On the interval $4 \le x \le 11$, must there be a value of x for which f(x) = -2? Explain.
- 8. For $-2 \le x \le 4$, what is the fewest possible number of times f(x) = 2?
- 9. On the interval $1 \le x \le 11$, *could* there be a value of x for which f(x) = -2? Explain.
- 10. On the interval $-7 \le x \le 11$ what is the minimum number of zeros?

Below is a table of values for a continuous function g

	Below is a table of values for a continuous fametion g.					
,	x	0	2	15	32	50
	g(x)	-1	10	17	-10	8

- 11. On the interval $2 \le x \le 15$, must there be a value of x for which g(x) = -3? Explain.
- 12. On the interval $15 \le x \le 32$, must there be a value of x for which g(x) = 11? Explain.
- 13. What is the minimum number of zeros g must have on the interval $15 \le x \le 50$?
- 14. What is the minimum number of zeros g must have on the interval $0 \le x \le 50$?
- 15. For $15 \le x \le 50$, what is the fewest possible number of times g(x) = 1?

Use the Intermediate Value Theorem to answer each problem.

- 16. If $f(x) = 3 x^2$, will f(x) = 0 on the interval [-2, 1]? Explain.
- 17. If $g(x) = \frac{1}{x}$, will g(x) = -1 on the interval [2,5]? Explain.

- 18. Calculator active. If $h(x) = \ln(2x + 1)$, will h(x) = 3 on the interval [2, 20]? Explain.
- 19. If $f(t) = 3t^2 10t + 2$, will f(x) = 1 on the interval [-1, 3]? Explain.

20. Let f be a continuous function such that f(1) = 7 and f(7) = 1. Let g be the function given by g(x) = f(x) - x. Explain why there must be a value c for 1 < c < 7 such that g(c) = 0.

21. The function *f* is continuous on the closed interval [1, 3] and has values that are given in the table below.

x	1	2	3
f(x)	2	k	3

The equation g(x) = 1 must have at least two intersections with f in the interval [1, 3] if k = 1

- (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E) 4
- 22. Suppose f is continuous on the closed interval [0,4] and suppose f(0) = 1, f(1) = 2, f(2) = 0, f(3) = -3, f(4) = 3. Which of the following statements about the zeros of f on [0,4] is always true?
 - (A) f has exactly one zero on [0, 4].
- (B) f has more than one zero on [0, 4].
- (C) f has more than two zeros on [0, 4].

- (D) f has exactly two zeros on [0, 4].
- (E) None of the statements above is true.