1.16 Intermediate Value Theorem (IVT)

Calculus

 Below is	a table o	f values f	or a conti	inuous fu	nction f.
r	_5	1	3	8	14

Delow is a dole of values for a continuous function					
x	-5	1	3	8	14
f(x)	7	40	21	75	-100

1. On the interval $-5 \le x \le 1$, must there be a value of x for which f(x) = 30? Explain. 5(-5) = 7 5(1) = 40

According to the IVT, there is a value *c* such that f(c) = 30 and $-5 \le c \le 1$.

2. On the interval $3 \le x \le 8$, *could* there be a value of x for which f(x) = 100? Explain.

Yes, there could be, but the IVT does not guarantee it.

- 3. On the interval $-5 \le x \le 14$ what is the minimum number of zeros?
- 4. For $1 \le x \le 14$, what is the fewest possible number of times f(x) = 20?
- 5. For $1 \le x \le 8$, what is the fewest possible number of times f(x) = 7?

Below is a table of values for a continuous function <i>h</i> .					
x	-7	-2	1	4	11
h(x)	2	-5	6	-1	10

- 6. For $-7 \le x \le 1$, what is the fewest possible number of times f(x) = 3?

No, the IVT cannot guarantee f(x) = -2 because the smallest y-value is -1.

- 8. For $-2 \le x \le 4$, what is the fewest possible number of times f(x) = 2?
- 9. On the interval $1 \le x \le 11$, *could* there be a value of x for which f(x) = -2? Explain.

Yes, there could be, but the IVT does not guarantee it.

10. On the interval $-7 \le x \le 11$ what is the minimum number of zeros?

? H

Below is a table of values for a continuous function g.

x	0	2	15	32	50
g(x)	-1	10	17	-10	8

11. On the interval $2 \le x \le 15$, must there be a value of x for which g(x) = -3? Explain.

f(x) = 10 f(15) = |7|

g(x) might be -3 at some point, but the IVT does not guarantee it because the smallest guaranteed value is 10.

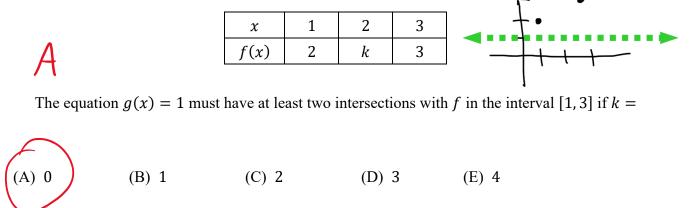
12. On the interval $15 \le x \le 32$, must there be a value of x for which g(x) = 11? Explain.

g(15) = 17 $g(3\lambda) = -10$

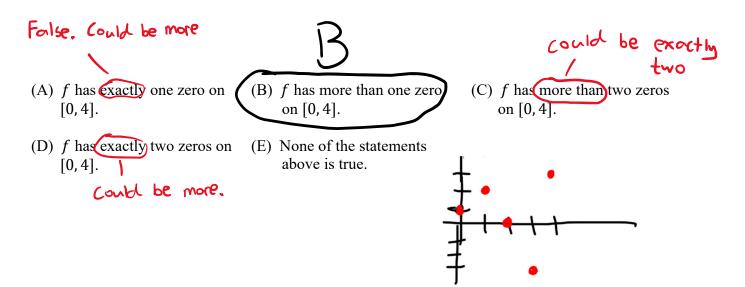
According to the IVT, there is a value *c* such that f(c) = 11 and $15 \le c \le 32$.

- 13. What is the minimum number of zeros g must have on the interval $15 \le x \le 50$?
- 14. What is the minimum number of zeros g must have on the interval $0 \le x \le 50$?
- 15. For $15 \le x \le 50$, what is the fewest possible number of times g(x) = 1?

Use the Intermediate Value Theorem to answer each problem.					
16. If $f(x) = 3 - x^2$, will $f(x) = 0$ on the	17. If $g(x) = \frac{1}{x}$, will $g(x) = -1$ on the interval				
interval [-2, 1]? Explain.	[2, 5]? Explain.				
f(x) is a continuous polynomial function.	g(x) is discontinuous at $x = 0$, but is continuous on the interval [2, 5].				
f(-2) = -1 and $f(1) = 2$	$g(2) = \frac{1}{2}$ and $g(5) = \frac{1}{5}$				
According to the IVT, there is a value c such that $f(c) = 0$ and $-2 \le c \le 1$.	There is no guarantee that $g(x) = -1$ because the smallest value is $\frac{1}{5}$.				
18. Calculator active. If $h(x) = \ln(2x + 1)$, will $h(x) = 3$ on the interval [2, 20]? Explain.	19. If $f(t) = 3t^2 - 10t + 2$, will $f(x) = 1$ on the interval $[-1, 3]$? Explain.				
$h(x)$ is continuous on $x > -\frac{1}{2}$	f(t) is a continuous polynomial function.				
$h(2) \approx 1.609$ and $h(20) \approx 3.7135$	f(-1) = 15 and $f(3) = -1$				
According to the IVT, there is a value c such that $h(c) = 3$ and $2 \le c \le 20$.	According to the IVT, there is a value c such that $f(c) = 1$ and $-1 \le c \le 3$.				


1.16 Intermediate Value Theorem (IVT)

Test Prep


20. Let f be a continuous function such that f(1) = 7 and f(7) = 1. Let g be the function given by g(x) = f(x) - x. Explain why there must be a value c for 1 < c < 7 such that g(c) = 0.

g(1) = f(1) - 1	9(7)=5(7)-7	By the IVT,
7-1 6	1 - 7 -6	there must be a value c on $12c27$ where $g(c) = 0$.

21. The function f is continuous on the closed interval [1, 3] and has values that are given in the table below.

22. Suppose f is continuous on the closed interval [0,4] and suppose f(0) = 1, f(1) = 2, f(2) = 0, f(3) = -3, f(4) = 3. Which of the following statements about the zeros of f on [0,4] is always true?

