1. $g(x)=-3 x^{2}+x+1$ and $h(x)=x-2$. If $f$ is a function that satisfies $g(x) \leq f(x) \leq h(x)$ for all $x$, what is $\lim _{x \rightarrow-1} f(x)$ ?
2. $g(x)=-x^{2}+x$ and $h(x)=x^{2}-x$. If $f$ is a function that satisfies $g(x) \leq f(x) \leq h(x)$ for $1 \leq x \leq 3$, what is $\lim _{x \rightarrow 2} f(x)$ ?
3. $g(x)=-\frac{1}{2} x^{2}+x-\frac{9}{2}$ and $h(x)=\cos (\pi(x+2))-3$. If $f$ is a function that satisfies $g(x) \leq f(x) \leq h(x)$ for all $x$, what is $\lim _{x \rightarrow 1} f(x)$ ?
4. $g(x)=\sin \left(\frac{\pi}{2}(x-1)\right)+2$ and
$h(x)=2 x^{2}+1$. If $f$ is a function that satisfies $g(x) \leq f(x) \leq h(x)$ for all $x$, what is $\lim _{x \rightarrow 0} f(x)$ ?
5. Let $f$ and $g$ be the functions defined by $f(x)=\frac{\sin x}{4 x}$ and $g(x)=x^{5} \cos \left(\frac{1}{x^{3}}\right)$ for $x \neq 0$. The following inequalities are true for $x \neq 0$. State whether each inequality can be used with the squeeze theorem to find the limit of the function as $x$ approaches 0 ?
a. $\frac{1}{4} \leq f(x) \leq \frac{1}{2}$
b. $-x^{5} \leq g(x) \leq x^{5}$
c. $-\frac{1}{x^{3}} \leq g(x) \leq \frac{1}{x^{3}}$
6. Let $f$ and $g$ be the functions defined by $f(x)=\frac{6-6 \cos x}{x^{2}}$ and $g(x)=x^{3} \cos \left(\frac{1}{x}\right)$ for $x \neq 0$. The following inequalities are true for $x \neq 0$. State whether each inequality can be used with the squeeze theorem to find the limit of the function as $x$ approaches 0 ?
a. $3-x^{2} \leq f(x) \leq 3$
b. $-x^{4} \leq f(x) \leq 1+x^{2}$
c. $-x^{3} \leq g(x) \leq x^{3}$
