- 1. $g(x) = -x^2 + 4x 1$ and h(x) = 5x 3. If f is a function that satisfies $g(x) \le f(x) \le h(x)$ for all x, what is $\lim_{x \to 1} f(x)$?
- 2. $g(x) = \cos(\pi(x-1)) + 1$ and $h(x) = \frac{1}{2}x^2 + x + \frac{5}{2}$. If f is a function that satisfies $g(x) \le f(x) \le h(x)$ for $-2 \le x \le 0$, what is $\lim_{x \to -1} f(x)$?

- 3. $g(x) \sin(\pi(x+1)) 1$ and $h(x) = \sin(\frac{\pi}{2}x) + 2$. If f is a function that satisfies $g(x) \le f(x) \le h(x)$ for all x, what is $\lim_{x \to 1} f(x)$?
- 4. $g(x) = -x^2 2x + 1$ and $h(x) = 7 x^2$. If f is a function that satisfies $g(x) \le f(x) \le h(x)$ for all x, what is $\lim_{x \to -3} f(x)$?

- 5. Let f and g be the functions defined by $f(x) = \frac{\sin x}{7x}$ and $g(x) = x^4 \cos\left(\frac{1}{x}\right)$ for $x \neq 0$. The following inequalities are true for $x \neq 0$. State whether each inequality can be used with the squeeze theorem to find the limit of the function as x approaches 0?
 - a. $\frac{1}{7} \le f(x) \le x^2 + \frac{1}{7}$
- b. $-\frac{1}{7} \le f(x) \le \frac{1}{7}$
- $c. -x^4 \le g(x) \le x^4$

- 6. Let f and g be the functions defined by $f(x) = \frac{4-4\cos x}{x^2}$ and $g(x) = x^2 \sin\left(\frac{1}{x}\right)$ for $x \neq 0$. The following inequalities are true for $x \neq 0$. State whether each inequality can be used with the squeeze theorem to find the limit of the function as x approaches 0?
 - a. $2(1-x^2) \le f(x) \le 2$

b. $-x^2 \le g(x) \le x^2$

	6b. Yes. Both equal 0.	6a. Yes. Both equal 2.	5c. Yes. Both equal 0.	5b. No. The upper and lower limits are not the same.
5a. Yes. Both equal 0.	42	3. Cannot be determined.	2.2	1. 2