1．$g(x)=-x^{2}+4 x-1$ and $h(x)=5 x-3$ ．If f is a function that satisfies $g(x) \leq f(x) \leq$ $h(x)$ for all x ，what is $\lim _{x \rightarrow 1} f(x)$ ？

2．$g(x)=\cos (\pi(x-1))+1$ and $h(x)=\frac{1}{2} x^{2}+x+\frac{5}{2}$ ．If f is a function that satisfies $g(x) \leq f(x) \leq h(x)$ for $-2 \leq x \leq 0$ ， what is $\lim _{x \rightarrow-1} f(x)$ ？

3．$g(x) \sin (\pi(x+1))-1$ and $h(x)=\sin \left(\frac{\pi}{2} x\right)+2$ ．If f is a function that satisfies $g(x) \leq f(x) \leq h(x)$ for all x ，what is $\lim _{x \rightarrow 1} f(x)$ ？

4．$g(x)=-x^{2}-2 x+1$ and
$h(x)=7-x^{2}$ ．If f is a function that satisfies $g(x) \leq f(x) \leq h(x)$ for all x ，what is $\lim _{x \rightarrow-3} f(x)$ ？

5．Let f and g be the functions defined by $f(x)=\frac{\sin x}{7 x}$ and $g(x)=x^{4} \cos \left(\frac{1}{x}\right)$ for $x \neq 0$ ．The following inequalities are true for $x \neq 0$ ．State whether each inequality can be used with the squeeze theorem to find the limit of the function as x approaches 0 ？
a．$\frac{1}{7} \leq f(x) \leq x^{2}+\frac{1}{7}$
b．$-\frac{1}{7} \leq f(x) \leq \frac{1}{7}$
c．$-x^{4} \leq g(x) \leq x^{4}$

6．Let f and g be the functions defined by $f(x)=\frac{4-4 \cos x}{x^{2}}$ and $g(x)=x^{2} \sin \left(\frac{1}{x}\right)$ for $x \neq 0$ ．The following inequalities are true for $x \neq 0$ ．State whether each inequality can be used with the squeeze theorem to find the limit of the function as x approaches 0 ？
a． $2\left(1-x^{2}\right) \leq f(x) \leq 2$
b．$-x^{2} \leq g(x) \leq x^{2}$

	0 ［enba ч10g ＇s2 X ＇99			ләмоI pǔ Iəddn əपL ＇ON＇qS
	て－＇t	$\begin{aligned} & \text { рәи!шіәәр } \\ & \text { әq џоииеว } \mathcal{E} \end{aligned}$	Z τ	$\chi^{\prime} \mathrm{I}$

