1.8 The Squeeze Theorem
Calculus
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Evaluate each limit.
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4. Let g and h be the functions defined by g(x) =

x? —3xand h(x) = 2 — 2x.

If f is a function that satisfies g(x) < f(x) <

h(x) for all x, what is lirr; f(x)?
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5. Let g and h be the functions defined by g(x) =
.2
cos(‘rr(x + 2)) —3and h(x) = % +x - g
If f is a function that satisfies g(x) < f(x) <
h(x) for =2 < x < 0, what is llm f(x)"
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6. Let g and h be the functions defined by g(x) =
x?+x—1and h(x) = —x? —4x—2.
If f is a function that satisfies g(x) < f(x) <
h(x) for all x, what is llm f (x)?
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Limit cannot be determined from
the Squeeze Theorem.

7. Let g and h be the functions defined by g(x) =
—x? —2x+5and h(x) = 2x? —x — 4.

If f is a function that satisfies g(x) < f(x) <

h(x) for all x, what is hm f (x)”
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Limit cannot be determined from

the Squeeze Theorem.

8. Let g and h be the functions defined by g(x) =
sin (g (x + _1)) — 1 and h(x) = cos(mx) — 3.

If f is a function that satisfies g(x) < f(x) <
h(x) for all x, what is lirr21' f(x)?
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9. Let g and h be the functions defined by g(x) =
x? and h(x) = cos(x).

If f is a function that satisfies g(x) < f(x) <

h(x) for —0.4 < x < 0.4, what is llm f(x)?
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10. Let f and g be the functions defined by f(x) =

following inequalities are true for x # 0. State whether each inequality can be used with the
squeeze theorem to find the limit of the function as x approaches 0?
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11. Let f and g be the functions defined by f(x) =

cosx—1

and g(x) = x? sm( )forx:tO The

following inequalities are true for x # 0. State whether each inequality can be used with the
squeeze theorem to find the limit of the function as x approaches 0?
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12. Let f and g be the functions defined by f(x) =

ndg(x)—xcos( )forx¢0 The

following inequalities are true for x # 0. State whether each inequality can be used with the

squeeze theorem to find the limit of the function as x approaches 0?
—x<f(x)<x
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