5. Let g and h be the functions defined by g(x) =

 $\cos(\pi(x+2)) - 3$ and $h(x) = \frac{x^2}{2} + x - \frac{7}{2}$.

If f is a function that satisfies $g(x) \le f(x) \le$

Evaluate each limit.

- 1. $\lim_{x\to 0} x \cos\left(\frac{1}{x}\right)$ $-1 \leq \cos(\frac{1}{2}) \leq 1$ -> = x cas (=>) = x 0 = king x (05(2) < 0 lim x cosk) = 0
- 2. $\lim_{x\to 0} x^2 \sin\left(\frac{1}{x^2}\right)$ -1 \(\text{Sin(\(\(\frac{1}{2} \) \\ \(\) \(\) \(\) -x2 x x sin(分) < x2 0 = King x sn (x) = 0 Therefore lim x sin(=) = 0
- 3. $\lim_{x\to 0} x \sin\left(\frac{1}{x^2}\right)$ - (\sin (\frac{1}{2}) \le | $-x \leq x \leq x \leq \sqrt{\frac{1}{2}} \leq x$ 0 = lim x sin(1) < 0 ling x sin(=) = 0

4. Let g and h be the functions defined by g(x) = $x^2 - 3x$ and h(x) = 2 - 2x. If f is a function that satisfies $g(x) \le f(x) \le$ h(x) for all x, what is $\lim f(x)$?

$$\frac{1}{3} - 3(a) \le \lim_{x \to 2} f(x) \le 2 - 2(a)$$
 $-2 \le \lim_{x \to 2} f(x) \le -2$
 $\lim_{x \to 2} f(x) = -2$

- h(x) for $-2 \le x \le 0$, what is $\lim_{x \to -1} f(x)$? $(05(\pi(-1+2))-3 \leq \lim_{x \to -1} f(x) \leq (-1)^{-1} + (-1)^{-\frac{3}{2}}$ (05(11)-3 < lim 1(x) < -6-1 -4 < lim f(x) < -4 lim + (x) = -2 Lim 5(x) =-4
- 6. Let g and h be the functions defined by g(x) = $x^2 + x - 1$ and $h(x) = -x^2 - 4x - 2$. If f is a function that satisfies $g(x) \le f(x) \le$ h(x) for all x, what is $\lim_{x \to a} f(x)$? (-1)+(-1)-1 = Lim +(x) < -(-1)-4(-1)-2 1-2 < lim to 4-1+4-2 Limit cannot be determined from
- 7. Let g and h be the functions defined by g(x) = $-x^2 - 2x + 5$ and $h(x) = 2x^2 - x - 4$. If f is a function that satisfies $g(x) \le f(x) \le$ h(x) for all x, what is $\lim_{x \to a} f(x)$? - (-2) -2(-2) +5= Lim 5(x)= 2(-2) - (-2) -4 74 + 4 + 5 = lim f(x) = 8 + 2 - 4 5 = lim f(x) = 6 Limit cannot be determined from the Squeeze Theorem.
- 8. Let g and h be the functions defined by g(x) = $\sin\left(\frac{\pi}{2}(x+1)-1\text{ and }h(x)=\cos(\pi x)-3.$ If f is a function that satisfies $g(x) \le f(x) \le$ h(x) for all x, what is $\lim_{x\to 2} f(x)$?

the Squeeze Theorem.

- Sin (3))-1 < lim +(1) < cos(27)-3 -1 -1 < (x+x+1)</br>
- 9. Let g and h be the functions defined by g(x) = x^2 and $h(x) = \cos(x)$. If f is a function that satisfies $g(x) \le f(x) \le$ h(x) for $-0.4 \le x \le 0.4$, what is $\lim f(x)$? رهر(ه) (رهر (ه) کر ده ده (ه) 0 < (im 2(x)< 1

Limit cannot be determined from the Squeeze Theorem.

- 10. Let f and g be the functions defined by $f(x) = \frac{\sin x}{5x}$ and $g(x) = x^2 \cos\left(\frac{1}{x^3}\right)$ for $x \neq 0$. The following inequalities are true for $x \neq 0$. State whether each inequality can be used with the squeeze theorem to find the limit of the function as x approaches 0?
 - a. $5(\sin(\pi(x+1))) \le f(x) \le \frac{1}{5}$

MO

$$b. -x^2 \le g(x) \le x^2$$

Yes

- 11. Let f and g be the functions defined by $f(x) = \frac{\cos x 1}{x^2}$ and $g(x) = x^2 \sin\left(\frac{1}{x}\right)$ for $x \neq 0$. The following inequalities are true for $x \neq 0$. State whether each inequality can be used with the squeeze theorem to find the limit of the function as x approaches 0?
 - a. $\frac{1}{5} \le f(x) \le \frac{1}{2}$

Mσ

b. $\frac{1}{2} - x^2 \le f(x) \le \frac{1}{2} + x^2$

- c. $-x^2 \le g(x) \le x^2$
 - 0 = limg(x) = 0 Yes

d. $-\frac{1}{x} \le g(x) \le \frac{1}{x}$

NO. & is unbounded $as \times \rightarrow 0$.

- 12. Let f and g be the functions defined by $f(x) = \frac{x^2 \sin x}{x}$ and $g(x) = x \cos \left(\frac{1}{|x|}\right)$ for $x \neq 0$. The following inequalities are true for $x \neq 0$. State whether each inequality can be used with the squeeze theorem to find the limit of the function as x approaches 0?
 - a. $-x \le f(x) \le x$

squeeze theorem to find the finite of the function as
$$x$$
 approaches of a . $-x \le f(x) \le x$

$$0 \le \lim_{x \to 0} f(x) \le 0$$

$$0 \le \lim_{x \to 0} f(x) \le 0$$