10.10 Alternating Series Error Bound

1. If the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{2 n+1}$ is approximated by the partial sum with 50 terms, what is the alternating series error bound?
2. Approximate an interval for the sum of the convergent alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n} 2}{n^{2}}$ using the Alternating
Series Error Bound the first 6 terms.
3. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ converges to S. Based on the alternating series error bound, what is the least number of terms to guarantee a partial sum that is within 0.02 of S ?
4. If the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{5}{n}$ is approximated by $S_{k}=\sum_{n=1}^{k}(-1)^{n+1} \frac{5}{n}$, what is the least value of k for which the alternating series error bound guarantees that $\left|S-S_{k}\right|<0.001$?
(A) 999
(B) 1000
(C) 4999
(D) 5000
5. Determine the least number of terms necessary to approximate the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} 3}{4^{n}}$ with an error less than 10^{-3}.

Answers to 10.10 CA \#1

| 1. $\frac{1}{103}$ | $2 .-1.662 \leq S \leq-1.5808$ | 3. 2500 | 4. D | 5. 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |

