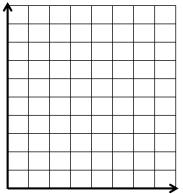
Calculus

10.10 Alternating Series Error Bound

Use the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ to fill in the table below.

	n=1									
n		1	2	3	4	5	6	7	8	
	fractions									
a _n	decimals									
c	fractions									
<i>S</i> _n	decimals									

Plot the points (n, S_n) on the graph.



Г					
	E				
	Error: S – S _n				
	$ S - S_n $				

Alternating Series Error Bound

If you have an alternating series that converges, we can approximate the sum of the series!

=

 \leq

S: Sum of the series S_n : Partial sum R_n : Remainder (or error) $R_n = S - S_n$

 $a_{n+1} = \text{next term (Error Bound)}$

Write your questions and thoughts here!

1. Determine the number of terms required to approximate the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ with an error less than 10^{-3} .

2. If the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{5n+2}$ is approximated by the partial sum with 10 terms, what is the alternating series error bound?

3. Calculator active. Approximate an interval of the sum of the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4}{n^2}$ using the Alternating Series Error Bound for the first 5 terms.

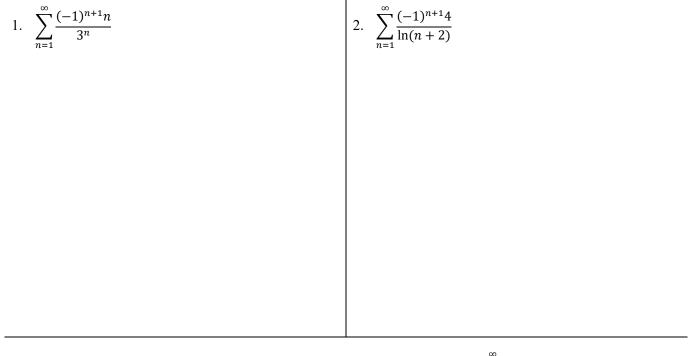
4. Let
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n+1)!} = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots$$
. Show that $1 - \frac{1}{3!}$ approximates $f(1)$ with an error less than 0.01.

10.10 Alternating Series Error Bound

Calculus

Practice

A calculator may be used on all problems in this practice. For 1-2, approximate an interval of the sum of the alternating series using the Alternating Series Error Bound for the first 6 terms.



3. Determine the number of terms needed to approximate the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ with an error less than 10^{-3} .

4. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ converges to S. Using the alternating series bound, what is the least number of terms

that must be summed to guarantee a partial sum that is within 0.05 of S?

5. If the infinite series $S = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{4}{n}$ is approximated by $P_k = \sum_{n=1}^{k} (-1)^{n+1} \frac{4}{n}$, what is the least value of k for which the alternating series error bound guarantees that $|S - P_k| < \frac{7}{100}$?

6. If the series $S = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^3}$ is approximated by the partial sum $S_k = \sum_{n=1}^{k} (-1)^{n+1} \frac{1}{n^3}$, what is the least value of k for which the alternating series error bound guarantees that $|S - S_k| \le \frac{7}{10000}$?

7. The series $\sum_{k=1}^{\infty} (-1)^{k+1} a_k$ converges by the alternating series test. If $S_n = \sum_{k=1}^n (-1)^{k+1} a_k$ is the *n*th partial sum of the series, which of the following statements must be true?

(A)
$$\lim_{n \to \infty} S_n = 0$$
 (B) $\lim_{n \to \infty} a_n = S$ (C) $|S - S_{20}| \le a_{26}$ (D) $|S - S_{25}| \le a_{26}$

8. If the series $\sum_{n=1}^{\infty} (-1)^n \frac{1}{5n+1}$ is approximated by the partials sum with 15 terms, what is the alternating series error bound?

(A)
$$\frac{1}{15}$$
 (B) $\frac{1}{16}$ (C) $\frac{1}{76}$ (D) $\frac{1}{81}$

9. The function f is defined by the power series $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x}{(2n+1)!}$ for all real numbers x. Show that $1 - \frac{1}{3!} + \frac{1}{5!}$ approximates f(1) with an error less than $\frac{1}{4000}$.

10.10 Alternating Series Error Bound

10. Calculator active! Let $f(x) = \sum_{n=1}^{\infty} \frac{x^n n^n}{n!}$ for all x for which the series converges.

a. Use the first three terms of the series to approximate $f\left(-\frac{1}{3}\right)$.

b. How far off is this estimate from the value of $f\left(-\frac{1}{3}\right)$? Justify your answer.

11. If the series
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2}$$
 is approximated with the series $\sum_{n=1}^{7} (-1)^{n+1} \frac{1}{n^2}$, what is the error bound?

Test Prep