Calculus

10.10 Alternating Series Error Bound

Notes

Write your questions and thoughts here!

Use the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ to fill in the table below.

n		1	2	3	4	5	6	7	8
a	吕								
S_{n}	号								

Plot the points $\left(n, S_{n}\right)$ on the graph.

Error: $\left\|S-S_{n}\right\|$								

Alternating Series Error Bound

If you have an alternating series that converges, we can approximate the sum of the series!

$$
=\quad \leq
$$

S : Sum of the series
S_{n} : Partial sum
R_{n} : Remainder (or error)
$R_{n}=S-S_{n}$
$a_{n+1}=$ next term (Error Bound)

Write your questions and thoughts here!

1. Determine the number of terms required to approximate the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$
with an error less than 10^{-3}.
2. If the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{5 n+2}$ is approximated by the partial sum with 10 terms, what is the alternating series error bound?
3. Calculator active. Approximate an interval of the sum of the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{4}{n^{2}}$ using
the Alternating Series Error Bound for the first 5 terms.
4. Let $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n+1)!}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\cdots$. Show that $1-\frac{1}{3!}$ approximates $f(1)$ with an error less than 0.01 .

10.10 Alternating Series Error Bound

Calculus
A calculator may be used on all problems in this practice. For 1-2, approximate an interval of the sum of the alternating series using the Alternating Series Error Bound for the first 6 terms.

1. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{3^{n}} \quad$ 2. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 4}{\ln (n+2)}$
2. Determine the number of terms needed to approximate the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}$ with an error less
than 10^{-3}.
3. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ converges to S. Using the alternating series bound, what is the least number of terms that must be summed to guarantee a partial sum that is within 0.05 of S ?
(A) 20
(B) 55
(C) 399
(D) 400
4. If the infinite series $S=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{4}{n}$ is approximated by $P_{k}=\sum_{n=1}^{k}(-1)^{n+1} \frac{4}{n}$, what is the least value of k for which the alternating series error bound guarantees that $\left|S-P_{k}\right|<\frac{7}{100}$?
(A) 55
(B) 56
(C) 57
(D) 60
5. If the series $S=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{3}}$ is approximated by the partial $\operatorname{sum} S_{k}=\sum_{n=1}^{k}(-1)^{n+1} \frac{1}{n^{3}}$, what is the least value of k for which the alternating series error bound guarantees that $\left|S-S_{k}\right| \leq \frac{7}{10000}$?
(A) 10
(B) 11
(C) 12
(D) 13
6. The series $\sum_{k=1}^{\infty}(-1)^{k+1} a_{k}$ converges by the alternating series test. If $S_{n}=\sum_{k=1}^{n}(-1)^{k+1} a_{k}$ is the nth partial sum of the series, which of the following statements must be true?
(A) $\lim _{n \rightarrow \infty} S_{n}=0$
(B) $\lim _{n \rightarrow \infty} a_{n}=S$
(C) $\left|S-S_{20}\right| \leq a_{26}$
(D) $\left|S-S_{25}\right| \leq a_{26}$
7. If the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{5 n+1}$ is approximated by the partials sum with 15 terms, what is the alternating series error bound?
(A) $\frac{1}{15}$
(B) $\frac{1}{16}$
(C) $\frac{1}{76}$
(D) $\frac{1}{81}$
8. The function f is defined by the power series $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x}{(2 n+1)!}$ for all real numbers x. Show that $1-\frac{1}{3!}+\frac{1}{5!}$ approximates $f(1)$ with an error less than $\frac{1}{4000}$.

10.10 Alternating Series Error Bound

10. Calculator active! Let $f(x)=\sum_{n=1}^{\infty} \frac{x^{n} n^{n}}{n!}$ for all x for which the series converges.
a. Use the first three terms of the series to approximate $f\left(-\frac{1}{3}\right)$.
b. How far off is this estimate from the value of $f\left(-\frac{1}{3}\right)$? Justify your answer.
11. If the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{2}}$ is approximated with the series $\sum_{n=1}^{7}(-1)^{n+1} \frac{1}{n^{2}}$, what is the error bound?
