A calculator may be used on all problems in this practice. For 1-2, approximate an interval of the sum of the alternating series using the Alternating Series Error Bound for the first 6 terms.

1. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{3^{n}}$
2. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 4}{\ln (n+2)}$
$\sum_{n=1}^{6} a_{n} \approx 0.185185$

$$
\left|a_{7}\right|=\frac{7}{3^{7}} \approx 0.0032
$$

$$
\left|S-S_{6}\right| \leq 0.032
$$

$-0.0032 \leq 5-0.185185 \leq 0.0032$

$$
-1.8204 \leq s-1.14046 \leq 1.8204
$$

$0.1819 \leq S \leq 0.188$

$$
-0.68 \leq 5 \leq 2.9609
$$

3. Determine the number of terms needed to approximate the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}$ with an error less
than 10^{-3}.

$$
\left|a_{n+1}\right|<10^{-3}
$$

$$
\begin{aligned}
\frac{1}{(n+1)^{2}} & <\frac{1}{1000} \\
1000 & <(n+1)^{2} \\
\sqrt{1000} & <n+1
\end{aligned}
$$

4. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ converges to S. Using the alternating series bound, what is the least number of terms that must be summed to guarantee a partial sum that is within 0.05 of S ?

$$
\begin{aligned}
& \left|a_{n+1}\right|<0.05 \\
& \frac{1}{\sqrt{n+1}}<0.05 \\
& 20<\sqrt{n+1}
\end{aligned}
$$

This is tricky! "Within" would mean not equal to 0.05 , but less than 0.05
(A) 20
(B) 55
(C) 399
5. If the infinite series $S=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{4}{n}$ is approximated by $P_{k}=\sum_{n=1}^{k}(-1)^{n+1} \frac{4}{n}$, what is the least value of k for which the alternating series error bound guarantees that $\left|S-P_{k}\right|<\frac{7}{100}$?
$\begin{aligned}\left|s-P_{k}\right| \leq\left|a_{k+1}\right| & <\frac{7}{100} \\ \frac{4}{k+1} & <\frac{7}{100} \\ 400 & <7 k+7 \\ \frac{303}{7} & <k\end{aligned}>k>56.1428$
(A) 55
(B) 56
(C) 57
(D) 60
6. If the series $S=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{3}}$ is approximated by the partial sum $S_{k}=\sum_{n=1}^{k}(-1)^{n+1} \frac{1}{n^{3}}$, what is the least value of k for which the alternating series error bound guarantees that $\left|S-S_{k}\right| \leq \frac{7}{10000}$?

$$
\left|s-s_{k}\right| \leq\left|a_{k+1}\right| \leq \frac{7}{10,0 \infty}
$$

$$
\frac{1}{(k+1)^{3}} \leqslant \frac{7}{10,00}
$$

$$
\begin{aligned}
& \frac{10,000}{7} \leq(k+1)^{3} \\
& \sqrt[3]{10,098} 7
\end{aligned} \leq k+1 \quad \longrightarrow k \geq 10.262
$$

(A) 10
(B) 11
(C) 12
(D) 13
7. The series $\sum_{k=1}^{\infty}(-1)^{k+1} a_{k}$ converges by the alternating series test. If $S_{n}=\sum_{k=1}^{n}(-1)^{k+1} a_{k}$ is the nth partial sum of the series, which of the following statements must be true?

(A) $\lim _{n \rightarrow \infty} S_{n}=0$
(B) $\lim _{n \rightarrow \infty} a_{n}=S$
(C) $\left|S-S_{20}\right| \leq a_{26}$
(D) $\left|S-S_{25}\right| \leq a_{26}$
8. If the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{5 n+1}$ is approximated by the partials sum with 15 terms, what is the alternating series error bound?

$$
\left|a_{n+1}\right|=\frac{1}{5(n+1)+1}=\frac{1}{5(16)+1}=\frac{1}{80+1}
$$

(A) $\frac{1}{15}$
(B) $\frac{1}{16}$
(C) $\frac{1}{76}$
(D) $\frac{1}{81}$
9. The function f is defined by the power series $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x}{(2 n+1)!}$ for all real numbers x. Show that $1-\frac{1}{3!}+\frac{1}{5!}$ approximates $f(1)$ with an error less than $\frac{1}{4000}$.

$$
\begin{aligned}
& \left|S-S_{n}\right|<\left|a_{n+1}\right| \\
& \left|f(1)-\left[1-\frac{1}{3!}+\frac{1}{5!}\right]\right|<\frac{1}{7!} \\
& \qquad \frac{1}{7!}=\frac{1}{5040} \text { Next term }=\text { error bound }
\end{aligned}
$$

10.10 Alternating Series Error Bound
10. Calculator active! Let $f(x)=\sum_{n=1}^{\infty} \frac{x^{n} n^{n}}{n!}$ for all x for which the series converges.
a. Use the first three terms of the series to approximate $f\left(-\frac{1}{3}\right)$.

$$
f\left(-\frac{1}{3}\right) \approx \sum_{n=1}^{3} \frac{\left(-\frac{1}{3}\right)^{n} \cdot n^{n}}{n!}=-0.2778
$$

b. How far off is this estimate from the value of $f\left(-\frac{1}{3}\right)$? Justify your answer.

Error bound is the next term.

$$
a_{4}=\frac{\left(-\frac{1}{3}\right)^{4} \cdot 4^{4}}{4!} \sim 0.13168
$$

The estimate of -0.2778 is off by 0.13168 or less. The error bound is the next term a_{4}.
11. If the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{2}}$ is approximated with the series $\sum_{n=1}^{7}(-1)^{n+1} \frac{1}{n^{2}}$, what is the error bound? Error bound $=8^{\text {th }}$ term $7^{\text {th }}$ term

$$
\left|a_{8}\right|=\frac{1}{8^{2}}=\frac{1}{64}
$$

