10.11 Taylor Polynomial Approximations

1. Find the third-degree Taylor Polynomial for $f(x)=e^{2 x}$ about $x=1$.
2. Let f be the function with third derivative $f^{\prime \prime \prime}(x)=12 x^{-3}$. What is the coefficient of $(x-1)^{4}$ in the fourthdegree Taylor polynomial of f about $x=1$?
3. The function f has derivatives of all orders for all real numbers with $f(4)=1, f^{\prime}(4)=3, f^{\prime \prime}(4)=5$, and $f^{\prime \prime \prime}(4)=12$. Using a third-degree Taylor Polynomial for f about $x=4$, what is the approximation of $f(4.1)$?
4. The third-degree Taylor Polynomial for a function f about $x=0$ is $\frac{x^{3}}{128}-\frac{x^{2}}{16}+\frac{x}{8}+4$. What is the value of $f^{\prime \prime \prime}(0)$?
5. Which of the following polynomial approximations is the best for $\sin 2 x$ near $x=0$?
(A) $2 x-8 x^{3}$
(B) $2-\frac{4}{3} x^{2}$
(C) $2 x-\frac{4}{3} x^{3}$
(D) $2-\frac{4}{3} x$

