10.11 Taylor Polynomial Approximations

1. Find the third-degree Taylor Polynomial for $f(x)=\ln x^{2}$ about $x=1$.
2. Let f be the function with third derivative $f^{\prime \prime \prime}(x)=18 x^{-4}$. What is the coefficient of $(x-1)^{4}$ in the fourthdegree Taylor polynomial of f about $x=1$?
3. The function f has derivatives of all orders for all real numbers with $f(2)=1, f^{\prime}(2)=-3, f^{\prime \prime}(2)=7$, and $f^{\prime \prime \prime}(2)=14$. Using a third-degree Taylor Polynomial for f about $x=2$, what is the approximation of $f(2.1)$?
4. The third-degree Taylor Polynomial for a function f about $x=1$ is given by $\frac{5(x-1)^{4}}{42}+\frac{2(x-1)^{3}}{21}-\frac{(x-1)^{2}}{8}+$ $\frac{3(x-1)}{7}+4$. What is the value of $f^{\prime \prime \prime}(1)$?
5. Which of the following polynomial approximations is the best for $e^{4 x}$ near $x=0$?
(A) $1+4 x+16 x^{2}+64 x^{3}$
(B) $1+4 x+8 x^{2}+\frac{32}{3} x^{3}$
(C) $e^{4}+4 e^{4} x+16 e^{4} x^{2}+64 e^{4} x^{3}$
(D) $1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}$

Answers to 10.11 CA \#2

| 1. $f(x)=2(x-1)-(x-1)^{2}+\frac{2}{3}(x-1)^{3}$ | 2. -3 | 3. $f(2.1) \approx .737$ |
| :--- | :--- | :--- | :--- |
| 4. $f^{\prime \prime \prime}(1)=\frac{4}{7}$ | 5. B | |

