Taylor polynomials are created to help us approximate other functions. Why would we do this? Because polynomials are easy to work with in calculus (i.e., taking a derivative or integral).

A Maclaurin polynomial is a special type of Taylor polynomial.

To start, we choose an x-value to center our polynomial approximation. Let's call that $x=c$. Our approximation will have the same y-value as the original function at $x=c$.

We expand the approximation about $\boldsymbol{x}=\boldsymbol{c}$. Another way of saying this: "the functions are centered at $\boldsymbol{x}=\boldsymbol{c}$."

Explore with an example: $f(x)=e^{x}$. Let $c=0$.

We want to make the graphs have a similar shape at the point $x=c$. They should have the same slope. That leads us to

In this example, that means

The polynomial approximation will look like this:

Or rewritten:

This is called a approximation. It works for a small interval around our point of center.

To improve the approximation, make the second derivatives agree at $x=c$.
We want $f(c)=p(c), f^{\prime}(c)=p^{\prime}(c), f^{\prime \prime}(c)=p^{\prime \prime}(c)$.
For our example this is $f(0)=p(0), f^{\prime}(0)=p^{\prime}(0), f^{\prime \prime}(0)=p^{\prime \prime}(0)$
If we worked through a similar process, we'd end up with the following:

Second-order approximation:

If we are centered at $x=0$, then we have the following pattern:

$$
p_{n}(x)=1+x+\frac{1}{2} x^{2}+\frac{1}{3!} x^{3}+\cdots+\frac{1}{n!} x^{n}
$$

$\mathbf{N}^{\text {th }}$ Taylor Polynomial
If $f(x)$ is a differentiable function, then an approximation of f centered about $x=c$ can be modeled by
$p_{n}(x)=$
where n is the order of the approximation.

Maclaurin Polynomial

A Maclaurin polynomial is a Taylor polynomial centered about $x=0$. It can b modeled by

$$
p_{n}(x)=
$$

where n is the order of the approximation.

1. Find the third-degree Maclaurin polynomial for $f(x)=e^{2 x}$

Evaluate at $f(0.2)$ and $p_{3}(0.2)$
2. Find a fourth-degree Taylor Polynomial for $f(x)=\ln x$ centered at $x=1$.

Evaluate at $f(1.1)$ and $p_{4}(1.1)$

Coefficients of a Taylor Polynomial
The coefficient of the nth degree term in a Taylor polynomial for a function f cenetered at $x=c$ is
3. Let f be a function with third derivative $f^{\prime \prime \prime}(x)=(8 x+2)^{\frac{3}{2}}$. What is the coefficient of $(x-2)^{4}$ in the fourth-degree Taylor Polynomial for f about $x=2$.

10.11 Taylor Polynomial Approximations

1. Find the fourth-degree Maclaurin Polynomial for $e^{4 x}$.
2. Find the fifth-degree Maclaurin Polynomial for the function $f(x)=\sin x$.
3. Find the third-degree Taylor Polynomial for $f(x)=\ln (2 x)$ about $x=1$.
4. Find the third-degree Taylor Polynomial about $x=0$ for $\ln (1-x)$.
5. Find the third-degree Taylor Polynomial about $x=4$ of \sqrt{x}.
6. The function f has derivatives of all orders for all real numbers with $f(1)=-1, f^{\prime}(1)=4, f^{\prime \prime}(1)=6$, and $f^{\prime \prime \prime}(1)=12$. Using the third-degree polynomial for f about $x=1$, what is the approximation of $f(1.1)$?
7. A function f has a Maclaurin series given by $3+4 x+2 x^{2}+\frac{1}{3} x^{3}+\cdots$, and the series converges to $f(x)$ for all real numbers x. If g is the function defined by $g(x)=e^{f(x)}$, what is the coefficient of x in the Maclaurin series for g ?
8. Let f be a function with third derivative $f^{\prime \prime \prime}(x)=(7 x+2)^{\frac{3}{2}}$. What is the coefficient of $(x-2)^{4}$ in the fourthdegree Taylor Polynomial for f about $x=2$?
9. Let $P(x)=4 x^{2}-6 x^{3}+8 x^{4}+4 x^{5}$ be the fifth-degree Taylor Polynomial for the function f about $x=0$. What is the value of $f^{\prime \prime \prime}(0)$?
10. Let P be the second-degree Taylor Polynomial for $f(x)=e^{-3 x}$ about $x=3$. What is the slope of the line tangent to the graph of P at $x=3$?
11. Let f be a function with $f(4)=2, f^{\prime}(4)=-1, f^{\prime \prime}(4)=6$, and $f^{\prime \prime \prime}(4)=12$. What is the third-degree Taylor Polynomial for f about $x=4$?
12. Let f be a function that has derivates of all orders for all real numbers. Assume $f(1)=3, f^{\prime}(1)=-2$, $f^{\prime \prime}(1)=2$, and $f^{\prime \prime \prime}(1)=4$. Use a second-degree Taylor Polynomial to approximate $f(0.7)$.
13. The function f has derivatives of all orders for all real numbers with $f(0)=4, f^{\prime}(0)=-3, f^{\prime \prime}(0)=3$, and $f^{\prime \prime \prime}(0)=2$. Let g be the function given by $g(x)=\int_{0}^{x} f(t) d t$. Find the third-degree Taylor Polynomial for g about $x=0$.
14.

x	$f(x)$	$f^{\prime}(x)$	$f^{\prime \prime}(x)$	$f^{\prime \prime \prime}(x)$
-4	1	-2	-4	2

Selected values for $f(x)$ and its first three derivatives are shown in the table above. What is the approximation for the value of $f(-3)$ about $x=-4$ obtained using the third-degree Taylor Polynomial for f.

10.11 Taylor Polynomial Approximations

15. Which of the following polynomial approximations is the best for $\cos (3 x)$ near $x=0$?
(A) $1+\frac{3}{2} x$
(B) $1-\frac{9}{2} x^{2}$
(C) $1+x$
(D) $1-\frac{9}{2} x+x^{2}$
16. Consider the logistic differential equation $\frac{d y}{d t}=\frac{y}{6}(4-y)$. Let $y=f(t)$ be the particular solution to the differential equation with $f(0)=6$.
a. Write the second-degree Taylor Polynomial for f about $t=0$.
b. Use the results from part a to approximate $f(1)$.

t (seconds)	0	4	10
$x^{\prime}(t)$ meters per second	5.0	5.8	4.0

17. The position of a particle moving along a straight line is modeled by $x(t)$. Selected values of $x^{\prime}(t)$ are shown in the table above and the position of the particle at time $t=10$ is $x(10)=8$.
a. Approximate $x^{\prime \prime}(8)$ using the average rate of change of $x^{\prime}(t)$ over the interval $4 \leq t \leq 10$. Show computations that lead to your answer.
b. Using correct units, explain the meaning of $x^{\prime \prime}(8)$ in the context of the problem.
c. Use a right Riemann sum with two subintervals to approximate $\int_{0}^{10}\left|x^{\prime}(t)\right| d t$.
d. Let s be a function such that the third derivative of s with respect to t is $(t-3)^{7}$. Write the fourth-degree term of the fourth-degree Taylor Polynomial for s about $t=1$.
