1. Find the fourth-degree Maclaurin Polynomial for $e^{4 x}$.

$$
\begin{array}{ll}
P_{4}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0) x^{2}}{2}+\frac{f^{\prime \prime \prime}(0) x^{3}}{3!}+\frac{f^{(4)}(0) x^{4}}{4!} \\
f(x)=e^{4 x} & f(0)=1 \\
f^{\prime}(x)=4 e^{4 x} & f^{\prime}(0)=4
\end{array} \quad P_{4}(x)=1+4 x+\frac{16 x^{2}}{2}+\frac{64 x^{3}}{3!}+\frac{256 x^{4}}{4!} \begin{array}{ll}
f^{\prime \prime}(x)=16 e^{4 x} & f^{\prime \prime}(0)=16 \\
f^{\prime \prime \prime}(x)=64 e^{4 x} & f^{\prime \prime \prime}(0)=64 \\
f^{(4)}(x)=256 e^{4 x} & f^{(4)}(0)=256
\end{array} \quad \begin{array}{ll}
P_{4}(x)=1+4 x+8 x^{2}+\frac{32}{3} x^{3}+\frac{32}{3} x^{4}
\end{array}
$$

2. Find the fifth-degree Maclaurin Polynomial for the function $f(x)=\sin x$.

$$
\begin{array}{ll}
P_{5}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{f^{(4)}(0)}{4!} x^{4}+\frac{f^{(5)}(0)}{5!} x^{5} \\
f=\sin x & f(0)=0 \\
f^{\prime}=\cos x & f^{\prime}(0)=1 \\
f^{\prime \prime}=-\sin x & f^{\prime \prime \prime}(0)=0 \\
f^{\prime \prime \prime}=-\cos x & f^{\prime \prime \prime}(0)=-1 \\
f^{(4)}=\sin x & f^{(4)}(0)=0 \\
f^{(5)}=\cos x & f^{(5)}(0)=1
\end{array} \quad \begin{array}{ll}
& P_{5}(x)=x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}
\end{array}
$$

3. Find the third-degree Taylor Polynomial for $f(x)=\ln (2 x)$ about $x=1$.

$$
\begin{array}{llc}
\begin{array}{l}
\text { Find the third-degree Taylor Polynomial for } f(x)=\ln (2 x) \text { about } x=1 . \\
P_{3}(x)=f(1)+f^{\prime}(1)(x-1)+ \\
f(x)=\ln (1)(x-1)^{2} \\
2
\end{array}+\frac{f^{\prime \prime \prime}(1)(x-1)^{3}}{3!} \\
f(x) & f(1)=\ln 2 & P_{3}(x)=\ln 2+(x-1)+-\frac{1}{2}(x-1)^{2}+\frac{2}{3!}(x-1)^{3} \\
f^{\prime}(x)=\frac{1}{x} & f^{\prime}(1)=1 & \text { simplified } \\
f^{\prime \prime}(x)=-\frac{1}{x^{2}} & f^{\prime \prime}(1)=-1 & P_{3}(x)=\ln 2+x-1-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3} \\
f^{\prime \prime \prime}(x)=\frac{2}{x^{3}} & f^{\prime \prime \prime}(1)=2 & P_{3}
\end{array}
$$

4. Find the third-degree Taylor Polynomial about $x=0$ for $\ln (1-x)$.

$$
\begin{array}{lll}
P_{3}(x)=f(0)+f^{\prime}(0)(x-0)+\frac{f^{\prime \prime}(0)(x-0)^{2}}{2}+\frac{f^{\prime \prime \prime}(0)(x-0)^{3}}{3!} \\
f(x)=\ln (1-x) & f(0)=0 & \\
f^{\prime}(x)=-\frac{1}{1-x} & f^{\prime}(0)=-1 & P_{3}(x)=0+(-1) x+\frac{(-1) x^{2}}{2}+\frac{(-2) x^{3}}{6} \\
f^{\prime \prime}(x)=-\frac{1}{(1-x)^{2}} & f^{\prime \prime}(0)=-1 & P_{3}(x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3} \\
f^{\prime \prime \prime}(x)=-\frac{2}{(1-x)^{3}} & f^{\prime \prime \prime}(0)=-2 &
\end{array}
$$

5. Find the third-degree Taylor Polynomial about $x=4$ of \sqrt{x}.

$$
\left.\left.\begin{array}{ll}
P_{3}(x)=f(4)+f^{\prime}(4)(x-4)+\frac{f^{\prime \prime}(4)(x-4)^{2}}{2}+\frac{f^{\prime \prime \prime}(4)(x-4)^{3}}{3!} \\
f(x)=\sqrt{x} & f(4)=2 \\
f^{\prime}(x)=\frac{1}{2 \sqrt{x}} & f^{\prime}(4)=4 \\
f^{\prime \prime}(x)=-\frac{1}{4 x^{3 / 2}} & f^{\prime \prime}(4)=-\frac{1}{32} \\
f^{\prime \prime \prime}(x)=\frac{3}{8 x^{5 / 2}} & f^{\prime \prime \prime}(4)=\frac{3}{256}
\end{array} \quad P_{3}(x)=2+\frac{1}{4}(x-4)+\left(-\frac{1}{32}\right)\left(\frac{1}{2}\right)(x-4)^{2}+\left(\frac{3}{35}\right)\left(\frac{1}{64}(x-4)^{2}\right)+\frac{1}{512}(x-4)^{3}\right)^{3}\right)
$$

6. The function f has derivatives of all orders for all real numbers with $f(1)=-1, f^{\prime}(1)=4, f^{\prime \prime}(1)=6$, and $f^{\prime \prime \prime}(1)=12$. Using the third-degree polynomial for f about $x=1$, what is the approximation of $f(1.1)$?

$$
\begin{aligned}
& P_{3}(x)=f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime \prime}(1)(x-1)^{2}}{2}+\frac{f^{\prime \prime \prime}(1)(x-1)^{3}}{3!} \\
& P_{3}(x)=-1+4(x-1)+\frac{6(x-1)^{2}}{2}+\frac{12(x-1)^{3}}{6} \\
& f(1.1) \approx P_{3}(1.1)=-0.568
\end{aligned}
$$

$$
f(0)>, f^{\prime}(0)
$$

7. A function f has a Maclaurin series given by $3+4 x+2 x^{2}+\frac{1}{3} x^{3}+\cdots$, and the series converges to $f(x)$ for all real numbers x. If g is the function defined by $g(x)=e^{f(x)}$, what is the coefficient of x in the Maclaurin series for g ?

$$
\begin{aligned}
& P_{n}(x)=g(0)+g^{\prime}(0) x+g^{\prime \prime}(0) \frac{x^{2}}{2}+\cdots \\
& g^{\prime}(x)=f^{\prime}(x) e^{f(x)} \\
& g^{\prime}(0)=f^{\prime}(0) e^{f(\theta)}
\end{aligned} \longrightarrow 4 e^{3}
$$

8. Let f be a function with third derivative $f^{\prime \prime \prime}(x)=(7 x+2)^{\frac{3}{2}}$. What is the coefficient of $(x-2)^{4}$ in the fourthdegree Taylor Polynomial for f about $x=2$?

$$
\begin{aligned}
& f^{4}(x)=\frac{3}{2} \cdot 7(7 x+2)^{2 / 2} \\
& f^{4}(2)=\frac{21}{2} \sqrt{16}=42
\end{aligned}
$$

$$
\begin{aligned}
& \frac{f^{\prime \prime \prime \prime}(2)(x-2)^{4}}{41} \\
& \frac{42}{24}=\frac{7}{4}
\end{aligned}
$$

9. Let $P(x)=4 x^{2}-6 x^{3}+8 x^{4}+4 x^{5}$ be the fifth-degree Taylor Polynomial for the function f about $x=0$. What is the value of $f^{\prime \prime \prime}(0)$?

$$
\begin{aligned}
& \frac{f^{\prime \prime \prime}(0)}{3!}=-6 \\
& f^{\prime \prime \prime}(0)=-36
\end{aligned}
$$

10. Let P be the second-degree Taylor Polynomial for $f(x)=e^{-3 x}$ about $x=3$. What is the slope of the line tangent to the graph of P at $x=3$?

At $x=3$, the slope of P and the slope of f are the same!

$$
\begin{array}{ll}
P^{\prime}(3)=f^{\prime}(3) \quad f^{\prime}(x)=-3 e^{-3 x} \\
f^{\prime}(3)=-3 e^{-9}
\end{array}
$$

11. Let f be a function with $f(4)=2, f^{\prime}(4)=-1, f^{\prime \prime}(4)=6$, and $f^{\prime \prime \prime}(4)=12$. What is the third-degree Taylor Polynomial for f about $x=4$?

$$
\begin{aligned}
& P_{3}(x)=f(4)+f^{\prime}(4)(x-4)+\frac{f^{\prime \prime}(4)(x-4)^{2}}{2}+\frac{f^{\prime \prime \prime}(4)(x-4)^{3}}{3!} \\
& P_{3}(x)=2+(-1)(x-4)+\frac{6}{2}(x-4)^{2}+\frac{12}{3!}(x-4)^{3} \\
& P_{3}(x)=2-(x-4)+3(x-4)^{2}+2(x-4)^{3}
\end{aligned}
$$

12. Let f be a function that has derivates of all orders for all real numbers. Assume $f(1)=3, f^{\prime}(1)=-2$, $f^{\prime \prime}(1)=2$, and $f^{\prime \prime \prime}(1)=4$. Use a second-degree Taylor Polynomial to approximate $f(0.7)$.

$$
\begin{aligned}
& P_{2}(x)=f(1)+f^{\prime}(1)(x-1)+f^{\prime \prime}(1)(x-1)^{2} \\
& P_{2}(x)=3-2(x-1)+(x-1)^{2} \\
& f(0.7) \approx P_{2}(0.7)=3.690
\end{aligned}
$$

13. The function f has derivatives of all orders for all real numbers with $f(0)=4, f^{\prime}(0)=-3, f^{\prime \prime}(0)=3$, and $f^{\prime \prime \prime}(0)=2$. Let g be the function given by $g(x)=\int_{0}^{x} f(t) d t$. Find the third-degree Taylor Polynomial for g about $x=0$.

$$
\begin{array}{lll}
P_{3}(x)=g(0)+g^{\prime}(0) x+\frac{g^{\prime \prime}(0) x^{2}}{2}+\frac{g^{\prime \prime \prime}(0) x^{3}}{3!} \\
g(x)=\int_{0}^{x} f(t) d t & g(0)=0 & P_{3}(x)=0+4 x+\frac{-3}{2} x^{2}+\frac{3}{3!} x^{3} \\
g^{\prime}(x)=f(x) & g^{\prime}(0)=4 & P_{3}(x)=4 x-\frac{3}{2} x^{2}+\frac{1}{2} x^{3} \\
g^{\prime \prime}(x)=f^{\prime}(x) & g^{\prime \prime}(0)=-3 &
\end{array}
$$

$$
g^{\prime \prime \prime}(x)=S^{\prime \prime}(x) \quad g^{\prime \prime \prime}(0)=3
$$

14.

x	$f(x)$	$f^{\prime}(x)$	$f^{\prime \prime}(x)$	$f^{\prime \prime \prime}(x)$
-4	1	-2	-4	2

Selected values for $f(x)$ and its first three derivatives are shown in the table above. What is the approximation for the value of $f(-3)$ about $x=-4$ obtained using the third-degree Taylor Polynomial for f.

$$
\begin{aligned}
& P_{3}(x)=f(-4)+f^{\prime}(-4)(x+4)+f^{\prime \prime}(-4)(x+4)^{2}+\frac{f^{\prime \prime}(-4)}{3!}(x+4)^{2} \\
& P_{3}(x)=1-2(x+4)+-4 / 2(x+4)^{2}+\frac{2}{6}(x+4)^{3} \\
& f(-3) \approx P_{3}(-3)=-8 / 3
\end{aligned}
$$

10.11 Taylor Polynomial Approximations
15. Which of the following polynomial approximations is the best for $\cos (3 x)$ near $x=0$?

$$
\begin{array}{lll}
f(x)=\cos (3 x) & f(0)=1 & P(x)=1+0 x+-9 / 2 x^{2} \\
f^{\prime}(x)=-3 \sin (3 x) & f^{\prime}(0)=0 & \\
f^{\prime \prime}(x)=-9 \cos (3 x) & f^{\prime \prime}(0)=-9
\end{array}
$$

(A) $1+\frac{3}{2} x$
(B) $1-\frac{9}{2} x^{2}$
(C) $1+x$
(D) $1-\frac{9}{2} x+x^{2}$
16. Consider the logistic differential equation $\frac{d y}{d t}=\frac{y}{6}(4-y)$. Let $y=f(t)$ be the particular solution to the differential equation with $f(0)=6$.
a. Write the second-degree Taylor Polynomial for f about $t=0$.

$$
\begin{aligned}
& f(0)=6 \\
& f^{\prime}(0)=\left.\frac{d y}{d t}\right|_{t=0} \\
& \begin{aligned}
f^{\prime \prime}(0) & =\left.\frac{d^{2} y}{d t^{2}}\right|_{t=0} \\
& =\frac{4}{6}(4-6)=-2 \\
& =\frac{d y}{d t}-\frac{2}{6}(-2)-1 / 3(6)(-2) \\
& =-4 / 3+4=\left.\frac{d y}{d t}\right|_{t=0}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& P_{2}(t)=f(0)+f^{\prime}(0) t+\frac{y^{\prime \prime}(0)}{2} t^{2} \\
& P_{2}(t)=6+(-2)+\frac{y_{3}^{2}}{2} \\
& P_{2}(t)=6-2 t+\frac{4}{3} t^{2}
\end{aligned}
$$

b. Use the results from part a to approximate $f(1)$.

$$
f(1)=P,(1)=6-2+4 / 3=11 / 3
$$

t (seconds)	0	4	10
$x^{\prime}(t)$ meters per second	5.0	5.8	4.0

17. The position of a particle moving along a straight line is modeled by $x(t)$. Selected values of $x^{\prime}(t)$ are shown in the table above and the position of the particle at time $t=10$ is $x(10)=8$.
a. Approximate $x^{\prime \prime}(8)$ using the average rate of change of $x^{\prime}(t)$ over the interval $4 \leq t \leq 10$. Show computations that lead to your answer.

$$
\frac{x^{\prime}(10)-x^{\prime}(4)}{10-4}=\frac{4.0-5.8}{10-4}=\frac{-1.8}{6}=-0.3
$$

b. Using correct units, explain the meaning of $x^{\prime \prime}(8)$ in the context of the problem.
$x^{\prime \prime}(8)$ is the rate of change of the rate of change of the position of the particle, in meters per second per second, at time $t=8$ seconds.
c. Use a right Riemann sum with two subintervals to approximate $\int_{0}^{10}\left|x^{\prime}(t)\right| d t$.

$$
(4)(5.8)+(6)(4.0)=47.2
$$

Both positive. Abs. value does not change anything.
d. Let s be a function such that the third derivative of s with respect to t is $(t-3)^{7}$. Write the fourth-degree term of the fourth-degree Taylor Polynomial for s about $t=1$.

$$
\begin{aligned}
& f^{(4)}(x)=7(t-3)^{6} \\
& f^{(4)}(1)=7(-2)^{6}=448
\end{aligned}
$$

$$
\frac{448(t-1)^{4}}{4!}=\frac{56}{3}(t-1)^{4}
$$

