10.12 Lagrange Error Bound

Calculus

CA #1

1. The fourth-degree Maclaurin polynomial for $\cos x$ is given by $1 - \frac{x^2}{2!} + \frac{x^4}{4!}$. Use the Lagrange error bound to estimate the error in using this polynomial to approximate $\cos \frac{\pi}{3}$.

2. The function f has derivatives of all orders for all real numbers and $f^{(4)}(x) = e^{\sin x}$. If the third-degree Taylor Polynomial for f about x = 0 is used to approximate f on [0,1], what is the Lagrange error bound for the maximum error on [0,1]?

3. Assume a third-degree Taylor Polynomial about x = 2 is used for the approximation f and $|f^{(4)}(x)| \le 12$ for all $x \ge 1$. Which of the following represents the Lagrange error bound in the approximation of f(2.5)?

(A)
$$\frac{1}{4}$$
 (B) $\frac{1}{2}$ (C) $\frac{1}{16}$ (D) $\frac{1}{32}$

4. Determine the degree of the Taylor Polynomial about x = 0 for $f(x) = e^x$ required for the error in the approximation of f(0.8) to be less than 0.005.

~	
•	
,	
-	

x	f(x)	f'(x)	$f^{\prime\prime}(x)$	$f^{\prime\prime\prime}(x)$	$f^{(4)}(x)$
2	112	164	214	312	345

Let *f* be a function having derivatives of all orders for x > 0. Selected values for the first four derivatives of *f* are given for x = 2. Use the Lagrange error bound to show that the third-degree Taylor Polynomial for *f* about x = 2 approximates f(1.9) with an error less than 0.002.

Answers to 10.12 CA #1								
1. 0.0105	2. 0.0967	3. D	4. $n = 5$	5. $R_3 = 0.0014375 < 0.002$				