1. The fourth-degree Maclaurin polynomial for $\cos x$ is given by $1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}$. Use the Lagrange error bound to estimate the error in using this polynomial to approximate $\cos \frac{\pi}{3}$.
2. The function f has derivatives of all orders for all real numbers and $f^{(4)}(x)=e^{\sin x}$. If the third-degree Taylor Polynomial for f about $x=0$ is used to approximate f on $[0,1]$, what is the Lagrange error bound for the maximum error on $[0,1]$?
3. Assume a third-degree Taylor Polynomial about $x=2$ is used for the approximation f and $\left|f^{(4)}(x)\right| \leq 12$ for all $x \geq 1$. Which of the following represents the Lagrange error bound in the approximation of $f(2.5)$?
(A) $\frac{1}{4}$
(B) $\frac{1}{2}$
(C) $\frac{1}{16}$
(D) $\frac{1}{32}$
4. Determine the degree of the Taylor Polynomial about $x=0$ for $f(x)=e^{x}$ required for the error in the approximation of $f(0.8)$ to be less than 0.005 .
5.

x	$f(x)$	$f^{\prime}(x)$	$f^{\prime \prime}(x)$	$f^{\prime \prime \prime}(x)$	$f^{(4)}(x)$
2	112	164	214	312	345

Let f be a function having derivatives of all orders for $x>0$. Selected values for the first four derivatives of f are given for $x=2$. Use the Lagrange error bound to show that the third-degree Taylor Polynomial for f about $x=2$ approximates $f(1.9)$ with an error less than 0.002 .

Answers to $10.12 \mathrm{CA} \# 1$

1. 0.0105	2. 0.0967	3. D	4. $n=5$	5. $R_{3}=0.0014375<0.002$

