10.12 Lagrange Error Bound

Calculus

1. The fifth-degree Maclaurin polynomial for sin x is given by $x - \frac{x^3}{3!} + \frac{x^5}{5!}$. Use the Lagrange error bound to estimate the error in using this polynomial to approximate sin $\frac{\pi}{3}$.

2. The function f has derivatives of all orders for all real numbers and $f^{(3)}(x) = e^{\cos x}$. If the second-degree Taylor Polynomial for f about x = 0 is used to approximate f on [0,1], what is the Lagrange error bound for the maximum error on [0,1]?

3. Assume a fourth-degree Taylor Polynomial about x = 2 is used for the approximation f and $|f^{(5)}(x)| \le 12$ for all $x \ge 1$. Which of the following represents the Lagrange error bound in the approximation of f(2.5)?

(A)
$$\frac{1}{120}$$
 (B) $\frac{1}{320}$ (C) 12 (D) $\frac{3}{8}$

4. Determine the degree of the Taylor Polynomial about x = 0 for $f(x) = \sin x$ required for the error in the approximation of f(0.3) to be less than 10^{-5} .

x	f(x)	f'(x)	$f^{\prime\prime}(x)$	$f^{\prime\prime\prime}(x)$	$f^{(4)}(x)$
1	$\frac{1}{2}$	$\frac{2}{3}$	<u>9</u> 10	<u>13</u> 12	<u>16</u> 21

Let *f* be a function having derivatives of all orders for x > 0. Selected values for the first four derivatives of *f* are given for x = 1. Use the Lagrange error bound to show that the third-degree Taylor Polynomial for *f* about x = 1 approximates f(0.8) with an error less than 10^{-4} .

Answers to 10.12 CA #2

1. 0.00183	2. 0.4530	3. B	4. $n = 5$	5. $R_3 = 5.079 \times 10^{-5} \le 10^{-4}$
------------	-----------	------	------------	---