Write your questions and thoughts here!

$$
\text { Exact value }=\text { Approximate value }+ \text { Remainder }
$$

Error:
$f(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)(x-c)^{2}}{2!}+\frac{f^{\prime \prime \prime}(c)(x-c)^{3}}{3!}+\cdots+\frac{f^{(n)}(c)(x-c)^{n}}{n!}+R(x)$

Lagrange Error Bound

Let $f(x)$ be differentiable through the order $n+1$. The error between the Taylor Polynomial and $f(x)$ is bounded by:

$$
\left|R_{n}(x)\right| \leq
$$

where z is some number between c and x.

1. The fourth degree Maclaurin polynomial for $\cos x$ is given by $p_{4}(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}$. If this polynomial is used to approximate $\cos (0.2)$, what is the Lagrange error bound?
2. Use a third degree Taylor polynomial on the interval $[0,1]$ for e^{x} centered about $x=0$ to approximate e^{1}. What is the error bound of this approximation?
3. What is the smallest order Taylor Polynomial centered at $x=1$ which will approximate e^{x-1} on the interval $[0,3]$ with a Lagrange error bound less than 1 ?
4. The third Maclaurin polynomial for $\sin x$ is given by $p(x)=x-\frac{x^{3}}{3!}$. If this polynomial is used to approximate $\sin (0.1)$, what is the Lagrange error bound?
5. If the Taylor Polynomial for approximating $\cos x$ is given by $1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}$, what is the upper bound for the error in the approximation of $\cos (0.3)$?
6. If the Taylor Polynomial about $x=0$ for the approximation of e^{x} is given by $1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}$, what is the upper bound for the error in the approximation of e ?
7. Let f be a function that has derivatives of all orders for all real numbers and let $P_{3}(x)$ be the third-degree Taylor Polynomial for f about $x=0 .\left|f^{(n)}(x)\right| \leq \frac{n}{n+1}$, for $1 \leq n \leq 5$ and all values of x. Of the following, which is the smallest value of k for which the Lagrange error bound guarantees that $\left|f(1)-P_{3}(1)\right| \leq k$?
(A) $\frac{5}{6}$
(B) $\frac{5}{6} * \frac{1}{5!}$
(C) $\frac{5}{6} * \frac{1}{4!}$
(D) $\frac{4}{5} * \frac{1}{4!}$
8. The function f has derivatives of all orders for all real numbers, $f^{(4)}(x)=e^{\cos x}$. If the third-degree Taylor Polynomial for f about $x=0$ is used to approximate f on the interval $[0,1]$, what is the Lagrange error bound?
9. The Taylor series for a function f about $x=3$ is given by $\sum_{n=0}^{\infty}(-1)^{n} \frac{3 n+1}{2^{n}}(x-3)^{n}$ and converges to f for $0 \leq$ $x \leq 5$. If the third-degree Taylor Polynomial for f about $\underset{n=0}{=} 3$ is used to approximate $f\left(\frac{13}{4}\right)$, what is the alternating series error bound?
10. Let f be a polynomial function with nonzero coefficients such that $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+$ $a_{5} x^{5} . T_{4}(x)$ is the fourth-degree Taylor Polynomial for f about $x=c$ such that $T_{4}=b_{0}+b_{1}(x-c)+$ $b_{2}(x-c)^{2}+b_{3}(x-c)^{3}+b_{4}(x-c)^{4}$. Based on the Lagrange error bound, $f(x)-T_{4}(x)$ must equal which of the following?
(A) x
(B) $(x-c)^{5}$
(C) $a_{5}(x-c)^{5}$
(D) $\frac{a_{5}(x-c)^{5}}{5!}$
11. Let $P(x)$ be the sixth-degree Taylor Polynomial for a function f about $x=0$. Information about the maximum of the absolute value of selected derivatives of f over the interval $0 \leq x \leq 1.5$ is given below.

$$
\max _{0 \leq x \leq 1.5}\left|f^{(5)}(x)\right|=9.3
$$

$$
\max _{0 \leq x \leq 1.5}\left|f^{(6)}(x)\right|=62.1
$$

$$
\max _{0 \leq x \leq 1.5}\left|f^{(7)}(x)\right|=481.3
$$

What is the smallest value of k for which the Lagrange error bound guarantees that $|f(1.5)-P(1.5)| \leq k$?
9. The function f has derivatives of all orders for all real numbers. Values of f and its first four derivatives at $x=2$ are given in the table.

x	$f(x)$	$f^{\prime}(x)$	$f^{\prime \prime}(x)$	$f^{\prime \prime \prime}(x)$	$f^{(4)}(x)$
2	6	-12	18	-24	34

a. Write the third-degree Taylor Polynomial for f about $x=2$, and use it to approximate $f(1.5)$.
b. The fourth derivative of f satisfies the inequality $\left|f^{(4)}(x)\right| \leq 48$ for all $x>1$. Use the Lagrange error bound to show that the approximation found in part (a) differs from $f(1.5)$ by no more than $\frac{1}{8}$.
10. Let h be a function having derivatives of all orders for $x>0$. Selected values for the first four derivatives of h are given for $x=3$. Use the Lagrange error bound to show that the third-degree Taylor polynomial for h about $x=3$ approximates $h(2.9)$ with an error less than 3×10^{-4}.

x	$h(x)$	$h^{\prime}(x)$	$h^{\prime \prime}(x)$	$h^{\prime \prime \prime}(x)$	$h^{(4)}(x)$
3	317	$\frac{753}{4}$	$\frac{1383}{4}$	$\frac{3483}{8}$	$\frac{1125}{16}$

10.12 Lagrange Error Bound

Test Prep

11. Calculator allowed.

x	$f(x)$	$f^{\prime}(x)$	$f^{\prime \prime}(x)$	$f^{\prime \prime \prime}(x)$	$f^{(4)}(x)$
3	4	-8	14	-22	30

The function f has derivatives of all orders for all real numbers. Values of f and its first four derivatives at $x=3$ are given in the table.
a. Write an equation for the line tangent to the graph of f at $x=3$ and use it to approximate $f(2.5)$.
b. Write the third-degree Taylor polynomial for f about $x=3$, and use it to approximate $f(2.5)$.
c. Is there enough information to determine whether f has a critical point at $x=2.5$? If not, explain why not. If so, determine whether $f(2.5)$ is a relative maximum, relative minimum, or neither, and give a reason for your answer.
d. The fourth derivative of f satisfies the inequality $\left|f^{(4)}(x)\right| \leq 48$ for all $x>2$. Use the Lagrange error bound to show that the approximation found in part (b) differs from $f(2.5)$ by no more than $\frac{1}{8}$.
e. What is the coefficient of the $(x-3)^{3}$ term in the Taylor series for f^{\prime}, the derivative of f, about $x=3$?

