10.12 Lagrange Error Bound

Write your questions and thoughts here!

Exact value = Approximate value + Remainder

Error:

$$f(x) = f(c) + f'(c)(x - c) + \frac{f''(c)(x - c)^2}{2!} + \frac{f'''(c)(x - c)^3}{3!} + \dots + \frac{f^{(n)}(c)(x - c)^n}{n!} + R(x)$$

Lagrange Error Bound

Let f(x) be differentiable through the order n + 1. The error between the Taylor Polynomial and f(x) is bounded by:

$$|R_n(x)| \le$$

where z is some number between c and x.

1. The fourth degree Maclaurin polynomial for $\cos x$ is given by $p_4(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$. If this polynomial is used to approximate $\cos(0.2)$, what is the Lagrange error bound?

Write your questions and thoughts here!

2. Use a third degree Taylor polynomial on the interval [0,1] for e^x centered about x=0 to approximate e^1 . What is the error bound of this approximation?

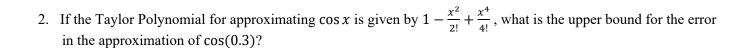
3. What is the smallest order Taylor Polynomial centered at x = 1 which will approximate e^{x-1} on the interval [0, 3] with a Lagrange error bound less than 1?

10.12 Lagrange Error Bound

Calculus

Practice

1. The third Maclaurin polynomial for $\sin x$ is given by $p(x) = x - \frac{x^3}{3!}$. If this polynomial is used to approximate $\sin(0.1)$, what is the Lagrange error bound?



3. If the Taylor Polynomial about x = 0 for the approximation of e^x is given by $1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!}$, what is the upper bound for the error in the approximation of e?

4. Let f be a function that has derivatives of all orders for all real numbers and let $P_3(x)$ be the third-degree Taylor Polynomial for f about x = 0. $\left| f^{(n)}(x) \right| \le \frac{n}{n+1}$, for $1 \le n \le 5$ and all values of x. Of the following, which is the smallest value of k for which the Lagrange error bound guarantees that $|f(1) - P_3(1)| \le k$?

(A)
$$\frac{5}{6}$$

(B)
$$\frac{5}{6} * \frac{1}{5!}$$

(B)
$$\frac{5}{6} * \frac{1}{5!}$$
 (C) $\frac{5}{6} * \frac{1}{4!}$ (D) $\frac{4}{5} * \frac{1}{4!}$

(D)
$$\frac{4}{5} * \frac{1}{4}$$

5. The function f has derivatives of all orders for all real numbers, $f^{(4)}(x) = e^{\cos x}$. If the third-degree Taylor Polynomial for f about x = 0 is used to approximate f on the interval [0,1], what is the Lagrange error bound? 6. The Taylor series for a function f about x = 3 is given by $\sum_{n=0}^{\infty} (-1)^n \frac{3n+1}{2^n} (x-3)^n$ and converges to f for $0 \le 1$ $x \le 5$. If the third-degree Taylor Polynomial for f about x = 3 is used to approximate $f\left(\frac{13}{4}\right)$, what is the alternating series error bound?

- 7. Let f be a polynomial function with nonzero coefficients such that $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^2 + a_5x^3 + a_5x^4 + a_5x^2 + a_5x^3 + a_5x^3 + a_5x^4 + a_5x^2 + a_5x^3 + a_5x^2 + a_5x^3 + a_5x^2 + a_5x^3 + a_5x^2 + a_5x^3 + a_5x^2 + a$ a_5x^5 . $T_4(x)$ is the fourth-degree Taylor Polynomial for f about x=c such that $T_4=b_0+b_1(x-c)+b_2(x-c)^2+b_3(x-c)^3+b_4(x-c)^4$. Based on the Lagrange error bound, $f(x)-T_4(x)$ must equal which of the following?
 - (A) x

- (B) $(x-c)^5$ (C) $a_5(x-c)^5$
- 8. Let P(x) be the sixth-degree Taylor Polynomial for a function f about x = 0. Information about the maximum of the absolute value of selected derivatives of f over the interval $0 \le x \le 1.5$ is given below.

$$\max_{0 \le x \le 1.5} \left| f^{(5)}(x) \right| = 9.3$$

$$\max_{0 \le x \le 1.5} \left| f^{(6)}(x) \right| = 62.1$$

$$\max_{0 \le x \le 1.5} \left| f^{(7)}(x) \right| = 481.3$$

What is the smallest value of k for which the Lagrange error bound guarantees that $|f(1.5) - P(1.5)| \le k$?

9. The function f has derivatives of all orders for all real numbers. Values of f and its first four derivatives at x = 2 are given in the table.

х	f(x)	f'(x)	f''(x)	f'''(x)	$f^{(4)}(x)$
2	6	-12	18	-24	34

a. Write the third-degree Taylor Polynomial for f about x = 2, and use it to approximate f(1.5).

b. The fourth derivative of f satisfies the inequality $|f^{(4)}(x)| \le 48$ for all x > 1. Use the Lagrange error bound to show that the approximation found in part (a) differs from f(1.5) by no more than $\frac{1}{8}$.

10. Let h be a function having derivatives of all orders for x > 0. Selected values for the first four derivatives of h are given for x = 3. Use the Lagrange error bound to show that the third-degree Taylor polynomial for h about x = 3 approximates h(2.9) with an error less than 3×10^{-4} .

x	h(x)	h'(x)	h''(x)	$h^{\prime\prime\prime}(x)$	$h^{(4)}(x)$
3	317	$\frac{753}{4}$	1383 4	3483	$\frac{1125}{16}$

10.12 Lagrange Error Bound

Test Prep

11. Calculator allowed.

x	f(x)	f'(x)	f''(x)	f'''(x)	$f^{(4)}(x)$
3	4	-8	14	-22	30

The function f has derivatives of all orders for all real numbers. Values of f and its first four derivatives at x = 3 are given in the table.

a. Write an equation for the line tangent to the graph of f at x=3 and use it to approximate f(2.5).

b.	Write the third-degree	Taylor polynomial for	f about $x = 3$, and use it to	approximate $f(2.5)$.

c. Is there enough information to determine whether
$$f$$
 has a critical point at $x = 2.5$? If not, explain why not. If so, determine whether $f(2.5)$ is a relative maximum, relative minimum, or neither, and give a reason for your answer.

d. The fourth derivative of
$$f$$
 satisfies the inequality $|f^{(4)}(x)| \le 48$ for all $x > 2$. Use the Lagrange error bound to show that the approximation found in part (b) differs from $f(2.5)$ by no more than $\frac{1}{8}$.

e. What is the coefficient of the $(x-3)^3$ term in the Taylor series for f', the derivative of f, about x=3?