Power Series

$$
\begin{aligned}
& \sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x^{1}+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n} \\
& \sum_{n=0}^{\infty} a_{n}(x-c)^{n}=a_{0}+a_{1}(x-c)^{1}+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots+a_{n}(x-c)^{n}
\end{aligned}
$$

The domain of a power series is the set of all x-values for which the power series converges.
Note! The center is always part of the domain.

Three ways a power series may converge:

1.

a.
2.
3.

The Interval of Convergence is the set of values for convergence. We use the Ratio Test to find the interval of convergence.

Ratio Test for Interval of Convergence

If you have a power series $\sum_{n=1}^{\infty} a_{n}$, find $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$.

- $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$, then the series converges
- $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0$, then the series converges
- $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty$, then the series converges

Find the radius and interval of convergence.

1. $\sum_{n=1}^{\infty} \frac{n}{3^{n}}(x-5)^{n}$
2. $\sum_{n=0}^{\infty} 3(x-2)^{n}$
3. $\sum_{n=0}^{\infty} \frac{(2 n)!x^{2 n}}{n!}$
4. $\sum_{n=0}^{\infty} \frac{x^{3 n}}{n!}$

10.13 Radius and Interval of Convergence of Power Series

Calculus
Find the interval of convergence for each power series.

1. $\left.\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{4^{n}} \right\rvert\,$ 2. $\sum_{n=0}^{\infty} \frac{(x+2)^{n}}{3^{n}}$
2. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-2)^{n}}{n 2^{n}}$
3. $\sum_{n=0}^{\infty}(2 n)!\left(\frac{x}{3}\right)^{n}$

Find the radius of convergence for each series.
5. $\sum_{n=1}^{\infty} \frac{(4 x)^{n}}{n^{2}}$
6. $\sum_{n=0}^{\infty} \frac{(x-4)^{n+1}}{2 \cdot 3^{n+1}}$
7. $\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}$
8. $\sum_{n=0}^{\infty} \frac{(2 n)!x^{2 n}}{n!}$

What are all values of \boldsymbol{x} for which each series converges?

9. $\sum_{n=1}^{\infty}\left(\frac{4}{x^{2}+1}\right)^{n}$
10. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}\left(x+\frac{3}{2}\right)^{n}$
11. $\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n \cdot 3^{n}}$
12. $\sum_{n=0}^{\infty} \frac{x^{5 n}}{n!}$

10.13 Radius and Interval of Convergence of Power Series

13. The radius of convergence for the power series $\sum_{n=1}^{\infty} \frac{(x-4)^{2 n}}{n}$ is equal to 1 . What is the interval of
convergence?
14. If the power series $\sum_{n=0}^{\infty} a_{n}(x-5)^{n}$ converges at $x=8$ and diverges at $x=10$, which of the following must be
true?
I. The series converges at $x=2$.
II. The series converges at $x=3$.
III. The series diverges at $x=0$.
(A) I only
(B) II only
(C) I and II only
(D) II and III only
15. The coefficients of the power series $\sum_{n=0}^{\infty} a_{n}(x-3)^{n}$ satisfy $a_{0}=6$ and $a_{n}=\left(\frac{2 n+1}{3 n+1}\right) a_{n-1}$ for all $n \geq 1$. What is the radius of convergence?
16. The radius of convergence for the power series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-5)^{n}}{n 5^{n}}$ is 5 , what is the interval of convergence?
(A) $-5<x<5$
(B) $-5<x \leq 5$
(C) $0<x<10$
(D) $0<x \leq 10$
17. Let $a_{n}=\frac{1}{n \ln n}$ for $n \geq 3$ and let f be the function given by $f(x)=\frac{1}{x \ln x}$.
a. The function f is continuous, decreasing, and positive. Use the Integral Test to determine the convergence or divergence of the series $\sum_{n=3}^{\infty} a_{n}$.
b. Find the interval of convergence of the power series $\sum_{n=3}^{\infty} \frac{(x-2)^{n+1}}{n \ln n}$.
