Calculus

Write your questions and thoughts here!

Power Series

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x^1 + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$$
$$\sum_{n=0}^{\infty} a_n (x-c)^n = a_0 + a_1 (x-c)^1 + a_2 (x-c)^2 + a_3 (x-c)^3 + \dots + a_n (x-c)^n$$

The domain of a power series is the set of all *x*-values for which the power series converges.

Note! The center is always part of the domain.

Three ways a power series may converge:

- 1. a. 2.
- ----
- 3.

The **Interval of Convergence** is the set of values for convergence. We use the Ratio Test to find the interval of convergence.

Ratio Test for Interval of Convergence

If you have a power series $\sum_{n=1}^{\infty} a_n$, find $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$.

- $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$, then the series converges
- $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0$, then the series converges
- $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then the series converges

10.13 Radius and Interval of Convergence of Power Series Calculus

Practice

Calculus	
Find the interval of convergence for each power series.	
$1. \sum_{n=0}^{\infty} \frac{(x-1)^n}{4^n}$	$2. \qquad \sum_{n=0}^{\infty} \frac{(x+2)^n}{3^n}$
3. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-2)^n}{n2^n}$	$4. \sum_{n=0}^{\infty} (2n)! \left(\frac{x}{3}\right)^n$

$$11. \quad \sum_{n=1}^{\infty} \frac{(x-2)^n}{n \cdot 3^n}$$

12.
$$\sum_{n=0}^{\infty} \frac{x^{5n}}{n!}$$

10.13 Radius and Interval of Convergence of Power Series

13. The radius of convergence for the power series $\sum_{n=1}^{\infty} \frac{(x-4)^{2n}}{n}$ is equal to 1. What is the interval of convergence?

14. If the power series $\sum_{n=0}^{\infty} a_n (x-5)^n$ converges at x = 8 and diverges at x = 10, which of the following must be true?

- I. The series converges at x = 2.
- II. The series converges at x = 3.
- III. The series diverges at x = 0.

(A) I only

(B) II only

(C) I and II only

15. The coefficients of the power series $\sum_{n=0}^{\infty} a_n (x-3)^n$ satisfy $a_0 = 6$ and $a_n = \left(\frac{2n+1}{3n+1}\right) a_{n-1}$ for all $n \ge 1$. What is the radius of convergence?

16. The radius of convergence for the power series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-5)^n}{n5^n}$ is 5, what is the interval of convergence?

(A)
$$-5 < x < 5$$
 (B) $-5 < x \le 5$ (C) $0 < x < 10$ (D) $0 < x \le 10$

17. Let $a_n = \frac{1}{n \ln n}$ for $n \ge 3$ and let *f* be the function given by $f(x) = \frac{1}{x \ln x}$.

a. The function f is continuous, decreasing, and positive. Use the Integral Test to determine the convergence or divergence of the series $\sum_{n=3}^{\infty} a_n$.

b. Find the interval of convergence of the power series $\sum_{n=3}^{\infty} \frac{(x-2)^{n+1}}{n \ln n}$