Find the interval of convergence for each power series.

$$
\text { 1. } \begin{aligned}
\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{4^{n}} \lim _{n \rightarrow \infty}\left|\frac{(x-1)^{n+1}}{4^{n+1}} \cdot \frac{4^{n}}{(x-1)^{n}}\right| \\
\lim _{n \rightarrow \infty}\left|\frac{(x-1)}{4}\right|<1 \\
-1<\frac{x-1}{4}<1 \\
-4<x-1<4 \\
-3<x<5
\end{aligned}
$$

Check endpoints!
 $\frac{x=5}{\infty} \begin{aligned} & \sum_{n=0}^{\frac{4^{n}}{4^{n}}}=1 \\ & \text { diverges }\end{aligned}$

$$
-3<x<5
$$

$$
\text { 2. } \begin{gathered}
\sum_{n=0}^{\infty} \frac{(x+2)^{n}}{3^{n}} \lim _{n \rightarrow \infty}\left|\frac{(x+2)^{n+1}}{3^{n+1}} \cdot \frac{3^{n}}{(x+2)^{n}}\right| \\
\lim _{n \rightarrow \infty}\left|\frac{(x+2)}{3}\right|<1 \\
-1<\frac{x+2}{3}<1 \\
-3<x+2<3 \\
-5<x<1
\end{gathered}
$$

Check endpoints
$\sum_{n=0}^{\infty} \frac{x=-5}{\frac{(-3)^{n}}{3^{n}}}$

$$
\sum_{n=0}^{\infty} \frac{x=1}{\frac{3^{n}}{3^{n}}}=1
$$

diverges

$$
-5<x<1
$$

$$
\begin{array}{ll|l}
\hline \text { 3. } \sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-2)^{n}}{n 2^{n}} \lim _{n \rightarrow \infty}\left|\frac{(x-2)^{n+1}}{(n+1) 2^{n+1}} \cdot \frac{n \cdot 2^{n}}{(x-2)^{n}}\right| & 4 . & \sum_{n=0}^{\infty}(2 n)!\left(\frac{x}{3}\right)^{n} \\
\lim _{n \rightarrow \infty}\left|\frac{(x-2)}{2} \cdot \frac{n}{n+1}\right|<1 & \lim _{\substack{\text { approaches })}} & \lim _{n \rightarrow \infty} \left\lvert\,\left(\frac{(2 n}{}\right.\right. \\
& -1<\frac{x-2}{2}<1 &
\end{array}
$$

$$
-2<x-2<2
$$

$$
0<x<4
$$

Check endpoints

$$
\sum_{n=1}^{\infty} \frac{x=0}{(-1)^{n+1}(-2)^{n}} \frac{n 2^{n}}{}
$$

$$
\sum_{n=1}^{\infty} \frac{\frac{x=4}{(-1)^{n+1}(2)^{n}}}{n 7^{\infty}}
$$

Diverges converges!

$$
0<x \leq 4
$$

$$
\text { 5. } \begin{aligned}
& \sum_{n=1}^{\infty} \frac{(4 x)^{n}}{n^{2}} \quad \lim _{n \rightarrow \infty}\left|\frac{(4 x)^{n+1}}{(n+1)^{2}} \cdot \frac{n^{2}}{(4 x)^{n}}\right| \\
& \lim _{n \rightarrow \infty}\left|\frac{n^{2}}{(n+1)^{2}} \cdot(4 x)\right|<1 \\
& \text { approaches } \mid \\
& -1<4 x<1 \\
& -\frac{1}{4}<x<\frac{1}{4} \\
& \text { radius }=\frac{1}{4}
\end{aligned}
$$

$$
\text { 7. } \sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!} \lim _{n \rightarrow \infty}\left|\frac{x^{2 n+2}}{(2 n+2)!} \cdot \frac{(2 n)!}{x^{2 n}}\right|
$$

$$
\lim _{n \rightarrow \infty}\left|\frac{1}{\left(n_{n}+1\right)(2 n+1)} \cdot \frac{x^{2}}{1}\right|=0
$$

converges for all values of x.

$$
\text { Radius }=\infty
$$

$$
\text { 6. } \begin{aligned}
& \sum_{n=0}^{\infty} \frac{(x-4)^{n+1}}{2 \cdot 3^{n+1}} \lim _{n \rightarrow \infty}\left|\frac{(x-4)^{n+2}}{2 \cdot 3^{n+2}} \cdot \frac{2 \cdot 3^{n+1}}{(x-4)^{n+1}}\right| \\
& \lim _{n \rightarrow \infty}\left|(x-4) \cdot \frac{1}{3}\right|<1 \\
&-1<\frac{x-4}{3}<1 \\
&-3<x-4<3 \\
& 1<x<7 \\
& \text { radius }=3 \\
& \text { 8. } \sum_{n=0}^{\infty} \frac{(2 n)!x^{2 n}}{n!} \lim _{n \rightarrow \infty}\left|\frac{(2 n+2)!x^{2 n+2}}{(n+1)!} \cdot \frac{n!}{(2 n)!x^{2+1}}\right| \\
& \lim _{n \rightarrow \infty}\left|\frac{(2 n+2)(2 n+1))}{n+1} \cdot \frac{x^{2}}{1}\right|=\infty \\
& \text { approaches } \infty
\end{aligned}
$$

converges to center.

$$
\text { radius }=0
$$

What are all values of x for which each series converges?
9. $\sum_{n=1}^{\infty}\left(\frac{4}{x^{2}+1}\right)^{n} \lim _{n \rightarrow \infty}\left|\left(\frac{4}{x^{2}+1}\right)^{n+1} \cdot\left(\frac{x^{2}+1}{4}\right)^{n}\right|$

$$
\lim _{n \rightarrow \infty}\left|\frac{4}{x^{2}+1}\right|<1
$$

only true if $x^{2}+1>4$

$$
x^{2}>3
$$

$x>\sqrt{3}$ or $x<-\sqrt{3}$
Both points lead to divergent series.

$$
x>\sqrt{3} \text { or } x<-\sqrt{3}
$$

$$
\begin{aligned}
& \text { 10. } \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}\left(x+\frac{3}{2}\right)^{n} \\
& \lim _{n \rightarrow \infty}\left|\frac{1}{n+1}\left(x+\frac{3}{2}\right)^{n+1} \cdot \frac{n}{\left(x+\frac{3}{2}\right)^{n}}\right| \\
& \lim _{n \rightarrow \infty}\left|\frac{n}{n+1} \cdot\left(x+\frac{3}{2}\right)\right|<1 \\
& -1<x+\frac{3}{2}<1 \\
& -5 / 2<x<-\frac{1}{2} \\
& \begin{array}{l}
\sum_{n=1}^{\infty} \frac{x=-\frac{1}{2}}{\infty}\left(\frac{(-1)^{n}}{n}(-1)^{n}\right. \\
\left(\frac{1}{n}\right)^{n} \\
\text { diverges! } \quad-\frac{5}{2}<x \leq-\frac{1}{2} \quad \sum_{n=1}^{\infty} \quad \frac{x=-\frac{1}{2}}{n} \quad \text { converges }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 11. } \sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n \cdot 3^{n}} \lim _{n \rightarrow \infty}\left|\frac{(x-2)^{n+1}}{(n+1) 3^{n+1}} \cdot \frac{n \cdot 3^{n}}{(x-2)^{n}}\right| \\
& \lim _{n \rightarrow \infty}\left|\frac{n}{(n+1)} \cdot \frac{x-2}{3}\right|<1 \\
& -1<\frac{x-2}{3}<1 \\
& -3<x-2<3 \\
& -1<x<5 \\
& \sum_{n=1}^{\infty} \frac{x=-1}{n 3^{n}} \\
& \text { converges } \\
& \begin{array}{l}
x=5 \\
\sum_{n=1}^{\infty} \frac{3^{n}}{n 3^{n}}
\end{array} \\
& \text { diverges } \\
& -1 \leq x<5
\end{aligned}
$$

$$
\begin{aligned}
& \text { 12. } \sum_{n=0}^{\infty} \frac{x^{5 n}}{n!} \lim _{n \rightarrow \infty}\left|\frac{x^{5 n+5}}{(n+1)!} \cdot \frac{n!}{x^{5 n}}\right| \\
& \lim _{n \rightarrow \infty}\left|\frac{1}{(n+1)} \cdot x^{5}\right|=0
\end{aligned}
$$

Converges for all values of x.

$$
(-\infty, \infty)
$$

10.13 Radius and Interval of Convergence of Power Series
13. The radius of convergence for the power series $\sum_{n=1}^{\infty} \frac{(x-4)^{2 n}}{n}$ is equal to 1 . What is the interval of
convergence?

$$
\begin{array}{ll}
\begin{array}{l}
\text { centered at } x=4 \\
3<x<5
\end{array} & \begin{array}{l}
\text { Check endpoints } \\
\sum_{n=1}^{\infty} \frac{x=3}{(-1)^{2 n}}=\frac{1}{n}
\end{array} \\
\begin{array}{ll}
& \sum_{n=1}^{\infty} \frac{x=5}{n} \\
\hline & \text { diverges }
\end{array} & \text { diverges }
\end{array}
$$

14. If the power series $\sum_{n=0}^{\infty} a_{n}(x-5)^{n}$ converges at $x=8$ and diverges at $x=10$, which of the following must be
true? center at $x=5$
Maybe I. The series converges at $x=2$.
Yes II. The series converges at $x=3$.
maybe III. The series diverges at $x=0$.
(A) I only

radius is between 3 and 5

(C) I and II only
(D) II and III only
15. The coefficients of the power series $\sum_{n=0}^{\infty} a_{n}(x-3)^{n}$ satisfy $a_{0}=6$ and $a_{n}=\left(\frac{2 n+1}{3 n+1}\right) a_{n-1}$ for all $n \geq 1$. What is the radius of convergence?

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{b_{n+1}}{b_{n}}\right|=? \\
& b_{n}=a_{n}(x-3)^{n} \\
& b_{n+1}=a_{n+1}(x-3)^{n+1} \\
& a_{n+1}=\left(\frac{2(n+1)+1}{3(n+1)+1}\right) a_{n} \\
& a_{n+1}=\frac{2 n+3}{3 n+4} a_{n} \\
& \frac{a_{n+1}}{a_{n}}=\frac{2 n+3}{3 n+4}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty}\left|\frac{2 n+3}{3 n+4} \cdot \frac{(x-3)^{n+1}}{(x-3)^{n}}\right|
$$

$$
\lim _{n \rightarrow \infty}\left|\frac{2 n+3}{3 n+4} \cdot(x-3)\right|<1
$$

$$
-1<\frac{3}{3}(x-3)<1
$$

$$
-\frac{3}{2}<x-3<\frac{3}{2}
$$

$$
\frac{3}{2}<x<\frac{a}{2}
$$

$$
\text { Interval }=3
$$

16. The radius of convergence for the power series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-5)^{n}}{n 5^{n}}$ is 5 , what is the interval of convergence?
centered at $x=5$
radius $=5$

$$
0<x<10
$$

Endpoints

$$
x=0
$$

$$
x=10
$$

diverges converges
(C) $0<x<10$
(D) $0<x \leq 10$
17. Let $a_{n}=\frac{1}{n \ln n}$ for $n \geq 3$ and let f be the function given by $f(x)=\frac{1}{x \ln x}$.
a. The function f is continuous, decreasing, and positive. Use the Integral Test to determine the convergence or divergence of the series $\sum_{n=3}^{\infty} a_{n}$.

$$
\begin{aligned}
\int_{3}^{\infty} \frac{1}{n \ln n} d n= & \lim _{t \rightarrow \infty}^{n=3} \int_{3}^{t} \frac{1}{n \ln n} d n \\
& \lim _{t \rightarrow \infty} \int_{3}^{t} \frac{1}{u} d u \\
& \left.\lim _{t \rightarrow \infty} \ln |n|\right|_{3} ^{t}
\end{aligned}
$$

$$
\text { let } u=\ln n
$$

$$
d u=\frac{1}{n} d n
$$

$$
n d u=d n
$$

Diverges by the Integral Test.
b. Find the interval of convergence of the power series $\sum_{n=3}^{\infty} \frac{(x-2)^{n+1}}{n \ln n}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{(x-2)^{n+2}}{(n+1)^{n}(n+1)} \cdot \frac{n \ln n}{(x-2)^{n+1}}\right|^{n=3} \\
& \lim _{n \rightarrow \infty}\left|\frac{(x-2)^{n}(x-2)^{2}}{(x-2)^{n}(x-2)^{1}} \cdot \frac{\left(\frac{n}{n} \ln n\right.}{(n+1) \ln (n+1)}\right| \\
& 1 \quad \frac{\infty}{\infty} \rightarrow \text { use L'Hopital's Rule } \\
& \quad \lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{\frac{1}{n+1}}=\frac{1}{n} \cdot \frac{n+1}{1}=1 \\
& \lim _{n \rightarrow \infty}|x-2|<1 \\
& -1<x-2<1 \\
& \quad \mid<x<3 \quad \text { check endpoints }
\end{aligned}
$$

$$
\sum_{n=3}^{\infty} \frac{x=1}{(-1)^{n+1}} \frac{\ln n}{n}
$$

converges

$$
\begin{gathered}
\sum_{n=3}^{\infty} \frac{x=3}{n \ln (n)} \\
\text { diverges }
\end{gathered}
$$

