10.14 Finding Taylor or Maclaurin Series

2. Write the first four non-zero terms for the Taylor Series for the function $f(x) = \frac{x \cos x}{2}$ about x = 0?

- 3. What is the sum of the series $3 \frac{3^3}{3!} + \frac{3^5}{5!} \frac{3^7}{7!} + \dots + \frac{(-1)^n 3^{2n+1}}{(2n+1)!}$?
 - (A) ln 3
- (B) e^{3}

- (C) sin 3
- (D) cos 3
- 4. Write the first four non-zero terms in the Maclaurin Series for the function $f(x) = xe^{2x}$.

5. Which of the following is the Maclaurin Series for the function f defined by $f(x) = 1 + x^2 + \sin x$?

- (A) $1 + x \frac{x^3}{3!} + \frac{x^5}{5!} \frac{x^7}{7!} + \cdots$
- (B) $1 + x^2 \frac{x^3}{3!} + \frac{x^5}{5!} \frac{x^7}{7!} + \cdots$

14115W C13 to 10:14 C11 112					
1. $\frac{1}{240}$	$2. \ \frac{x}{2} - \frac{x^3}{4} + \frac{x^5}{48} - \frac{x^7}{720}$	3. C	$4. x + 2x^2 + 2x^3 + \frac{4x^4}{3}$	5. D	