Calculus

Write your questions and thoughts here!

Taylor Series

If f(x) has derivatives of all orders at x = c, then a Taylor Series may be formed that is equal to the function for many common functions.

If c = 0 it is a

You need to know the following series:

The Taylor series of these functions are exact when we go to ∞ . They must be memorized!

Maclaurin Series for <i>e^x</i> .	Maclaurin Series for sin x.

Memorize the following!

Function	Series (expanded)	Series Notation	Int. of Conv.
$e^x =$			
$\sin x =$			
$\cos x =$			
$\frac{1}{1+x} =$			

Write your questions and thoughts here!

The function
$$f(x) = \frac{1}{1-x}$$
 is actually a geometric series.
Recall: $\sum_{n=k}^{\infty} ar^n =$
Find the Maclaurin Series for each of the following functions
3. $\sin x^2$
4. x^2e^x

10.14 Finding Taylor or Maclaurin Series Calculus

Practice

1. What is the coefficient of x^6 in the Taylor Series about x = 0 for the function $f(x) = \frac{e^{2x^2}}{2}$?

2. If $f(x) = x \sin 3x$, what is the Taylor Series for f about x = 0? Write the first four non-zero terms.

3. What is the Maclaurin Series for $\frac{1}{(1-x)^2}$? Write the first four non-zero terms.

4. What is the Maclaurin Series for the function $f(x) = \frac{1}{2}(e^x + e^{-x})$? Write the first four non-zero terms.

5. Find the Maclaurin Series for the function $f(x) = \cos \sqrt{x}$. Write the first four non-zero terms.

6. Find the Maclaurin Series for the function $f(x) = \sin 5x$. Write the first four non-zero terms.

7. What is the Taylor series expansion about x = 0 for the function $f(x) = \frac{\sin x}{x}$? Write the first four non-zero terms.

8. The sum of the series $1 + \frac{3}{1!} + \frac{3^2}{2!} + \frac{3^3}{3!} + \dots + \frac{3^n}{n!}$ is

(A) $\ln 3$ (B) e^3	(C) cos 3	(D) sin 3
-----------------------	-----------	-----------

9. What is the sum of the series $1 + \ln 3 + \frac{(\ln 3)^2}{2!} + \dots + \frac{(\ln 3)^n}{n!}$?

10. What is the Taylor Series about x = 0 for the function $f(x) = 1 + x^2 + \cos x$? Write the first four non-zero terms.

11. What is the sum of the infinite series
$$1 - \left(\frac{\pi}{2}\right)^2 \left(\frac{1}{3!}\right) + \left(\frac{\pi}{2}\right)^4 \left(\frac{1}{5!}\right) - \left(\frac{\pi}{2}\right)^6 \left(\frac{1}{7!}\right) + \dots + \frac{\left(\frac{\pi}{2}\right)^{2n} (-1)^n}{(2n+1)!}$$
?

12. Find the Maclaurin Series for the function $f(x) = e^{-3x}$. Write the first four non-zero terms.

13. Find the Maclaurin Series for the function $f(x) = \frac{\sin x^2}{x} + \cos x$. Write the first four non-zero terms.

14. Which of the following is the Maclaurin Series for the function $f(x) = x \cos 2x$?

(A)
$$\sum_{n=0}^{\infty} \frac{(-1)^n 2x^{2n}}{(2n)!}$$
 (B) $\sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n} x^{2n}}{(2n)!}$ (C) $\sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n} x^{2n+1}}{(2n)!}$ (D) $\sum_{n=0}^{\infty} \frac{(-1)^n 2x^{2n+1}}{(2n)!}$

10.14 Finding Taylor or Maclaurin Series

15. The Maclaurin series $x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots + \frac{x^{2n+1}}{(2n+1)!}$ represents which function f(x)

(A) $\sin x$ (B) $-\sin x$ (C) $\frac{1}{2}(e^x - e^{-x})$ (D) $e^x - e^{-x}$

- 16. The function f satisfies the equation f'(x) = f(x) + x + 1 and f(0) = 2. The Taylor Series for f about x = 0 converges to f(x) for all x.
 - a. Write an equation for the line tangent to the curve of y = f(x) at x = 0.

b. Find f''(0) and find the second-degree Taylor Polynomial for f about x = 0.

Test Prep

c. Find the fourth-degree Taylor Polynomial for f about x = 0.

d. Find $f^{(n)}(0)$, the n^{th} derivative of f about x = 0, for $n \ge 2$. Use the Taylor Series for f about x = 0 and the Taylor Series for e^x about x = 0 to find $f(x) - 4e^x$.