1. What is the coefficient of x^{6} in the Taylor Series about $x=0$ for the function $f(x)=\frac{e^{2 x^{2}}}{2}$?

$$
\begin{aligned}
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
& \frac{e^{2 x^{2}}}{2}=\frac{1}{2}\left[1+2 x^{2}+\frac{\left(2 x^{2}\right)^{2}}{2!}+\frac{\left(2 x^{2}\right)^{3}}{3!}+\cdots\right] \\
& 1 /\left[\frac{8 x^{6}}{6}\right]=\frac{2}{3} x^{6} 2 / 3
\end{aligned}
$$

2. If $f(x)=x \sin 3 x$, what is the Taylor Series for f about $x=0$? Write the first four nonzero terms.

$$
\begin{aligned}
\sin x & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!} \\
x \sin (3 x) & =x\left[3 x-\frac{(3 x)^{3}}{3!}+\frac{(3 x)^{5}}{5!}-\frac{(3 x)^{7}}{7!}\right] \\
& =3 x^{2}-\frac{27 x^{4}}{3!}+\frac{243 x^{6}}{5!}-\frac{2187 x^{8}}{7!}
\end{aligned}
$$

3. What is the Maclaurin Series for $\frac{1}{(1-x)^{2}}$? Write the first four nonzero terms.

$$
\begin{aligned}
& \frac{1}{(1-x)} \cdot \frac{1}{(1-x)} \\
& \sum_{n=0}^{\infty} x^{n} \cdot \sum_{n=0}^{\infty} x^{n} \\
& {\left[1+x+x^{2}+x^{3}+\cdots\right]\left[1+x+x^{2}+x^{3}+\cdots\right]}
\end{aligned}
$$

4. What is the Maclaurin Series for the function $f(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$? Write the first four nonzero terms.

$$
\begin{gathered}
\frac{1}{2} e^{x}=\frac{1}{2}+\frac{1}{2} x+\frac{1}{2}\left(\frac{x^{2}}{2}\right)+\frac{1}{2}\left(\frac{x^{3}}{3!}\right)+\frac{1}{2}\left(\frac{4}{4}\right)+\frac{1}{2}\left(\frac{x}{5}!\right)+\frac{1}{2}\left(\frac{x!}{6!}\right) \\
\frac{1}{2} e^{-x}=\frac{1}{2}+\frac{1}{2}(-x)+\frac{1}{2}\left(\frac{x^{2}}{2}\right)+\frac{1}{2}\left(-\frac{x}{3}!\right)+\frac{1}{2}\left(\frac{x^{4}}{4!}\right)+\frac{1}{2}\left(-\frac{x}{5} 5!+\frac{1}{2}\left(\frac{x 6}{6!}\right)\right. \\
1+0+\frac{x^{2}}{2}+0+\frac{x^{4}}{4!}+0+\frac{x^{6}}{6!} \\
1+\frac{x^{2}}{2}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}
\end{gathered}
$$

5. Find the Maclaurin Series for the function $f(x)=\cos \sqrt{x}$. Write the first four non-zero terms.

$$
\begin{aligned}
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
& \cos \sqrt{x}=1-\frac{x}{2}+\frac{x^{2}}{4!}-\frac{x^{3}}{6!}
\end{aligned}
$$

6. Find the Maclaurin Series for the function $f(x)=\sin 5 x$. Write the first four non-zero terms.
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}$
$\sin 5 x=5 x-\frac{125 x^{3}}{3!}+\frac{5^{5} x^{5}}{5!}-\frac{5^{7} x^{7}}{7!}$
7. What is the Taylor series expansion about $x=0$ for the function $f(x)=\frac{\sin x}{x}$? Write the first four non-zero terms.

$$
\begin{aligned}
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!} \\
& \frac{1}{x} \cdot \sin x=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}
\end{aligned}
$$

8. The sum of the series $1+\frac{3}{1!}+\frac{3^{2}}{2!}+\frac{3^{3}}{3!}+\cdots+\frac{3^{n}}{n!}$ is

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad e^{3}=\sum_{n=0}^{\infty} \frac{3^{n}}{n!}
$$

(A) $\ln 3$

9. What is the sum of the series $1+\ln 3+\frac{(\ln 3)^{2}}{2!}+\cdots+\frac{(\ln 3)^{n}}{n!}$?
(C) $\cos 3$
(D) $\sin 3$
follows pattern of $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ where $x=\ln 3$

$$
e^{\ln 3}=3
$$

10. What is the Taylor Series about $x=0$ for the function $f(x)=1+x^{2}+\cos x$? Write the first four non-zero terms.

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots
$$

$$
1+x^{2}+\cos x=2+\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}
$$

11. What is the sum of the infinite series $1-\left(\frac{\pi}{2}\right)^{2}\left(\frac{1}{3!}\right)+\left(\frac{\pi}{2}\right)^{4}\left(\frac{1}{5!}\right)-\left(\frac{\pi}{2}\right)^{6}\left(\frac{1}{7!}\right)+\cdots+\frac{\left(\frac{\pi}{2}\right)^{2 n}(-1)^{n}}{(2 n+1)!}$?
$\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$. Dividing by x gives $\frac{\sin x}{x}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n+1)!}$
Let $x=\frac{\pi}{2} \quad \frac{\sin \pi / 2}{\pi / 2}=\frac{1}{\pi / 2}=2 / \pi$
12. Find the Maclaurin Series for the function $f(x)=e^{-3 x}$. Write the first four non-zero terms.

$$
\begin{aligned}
& e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!} \text { could reduce } \\
& e^{-3 x}=1-3 x+\frac{9 x^{2}}{2}-\frac{27 x^{3}}{6}
\end{aligned}
$$

13. Find the Maclaurin Series for the function $f(x)=\frac{\sin x^{2}}{x}+\cos x$. Write the first four non-zero terms.

$$
\begin{aligned}
\sin x= & x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!} \\
\frac{\sin x^{2}}{x}= & \frac{x^{2}}{x}-\frac{\left(x^{2}\right)^{3}}{x!}+\frac{\left(x^{5}\right)^{3}}{x 5!}-\frac{\left(x^{2}\right)^{7}}{x \cdot 7!} \\
& x-\frac{x^{5}}{3!}+\frac{x^{9}}{5!}-\frac{x^{13}}{7!}
\end{aligned}
$$

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}
$$

add and keep first four terms.

$$
1+x-\frac{x^{2}}{2}+\frac{x^{4}}{4!}
$$

14. Which of the following is the Maclaurin Series for the function $f(x)=x \cos 2 x$?

$$
\begin{aligned}
& \cos x=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
& x \cos (2 x)=x-\frac{x(2 x)^{2}}{2}+\frac{x(2 x)^{4}}{4!}-\frac{x(2 x)^{6}}{6!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n} \cdot(2)^{2 n} \cdot x}{(2 n)!}
\end{aligned}
$$

(A) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2 x^{2 n}}{(2 n)!}$
(B) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n} x^{2 n}}{(2 n)!}$
(C) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n} x^{2 n+1}}{(2 n)!}$
(D) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2 x^{2 n+1}}{(2 n)!}$
15. The Maclaurin series $x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\cdots+\frac{x^{2 n+1}}{(2 n+1)!}$ represents which function $f(x)$
(A) $\sin x=x \Theta \frac{x^{3}}{3!}+\cdots$ no!
(B) $-\sin x=\theta x+\frac{x^{3}}{3!} \theta \frac{x^{5}}{5!} \cdots n o!$
(D) $e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots$

$$
e^{-x}=1-x+\frac{x^{2}}{2}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots
$$

$$
e^{x}-e^{-x}=2 x+\frac{2 x^{3}}{3!}+\frac{2 x^{5}}{5!}+\cdots \text { close! }
$$

(C) $\frac{1}{2}$ of choice (D) is correct.
(A) $\sin x$
(B) $-\sin x$
(C) $\frac{1}{2}\left(e^{x}-e^{-x}\right)$
(D) $e^{x}-e^{-x}$
16. The function f satisfies the equation $f^{\prime}(x)=f(x)+x+1$ and $f(0)=2$. The Taylor Series for f about $x=0$ converges to $f(x)$ for all x.
a. Write an equation for the line tangent to the curve of $y=f(x)$ at $x=0$.

$$
\begin{gathered}
f^{\prime}(0)=f(0)+0+1=2+1=3 \\
y-2=3(x-0) \\
y=3 x+2
\end{gathered}
$$

b. Find $f^{\prime \prime}(0)$ and find the second-degree Taylor Polynomial for f about $x=0$.

$$
\begin{aligned}
& f^{\prime \prime}(0)=f^{\prime}(0)+1=3+1=4 \\
& P_{2}(x)=f(0)+f^{\prime}(0) x+f^{\prime \prime}(0) x^{2} \\
& P_{2}(x)=2+3 x+2 x^{2}
\end{aligned}
$$

c. Find the fourth-degree Taylor Polynomial for f about $x=0$.

$$
\begin{aligned}
& f^{\prime \prime \prime}(0)=f^{\prime \prime}(0)=4 \\
& f^{4}(0)=f^{\prime \prime \prime}(0)=4 \\
& P_{4}(x)=2+3 x+2 x^{2}+\frac{4 x^{3}}{3!}+\frac{4 x^{4}}{4!} \\
& P_{4}(x)=2+3 x+2 x^{2}+\frac{2 x^{3}}{3}+\frac{x^{4}}{6}
\end{aligned}
$$

d. Find $f^{(n)}(0)$, the $n^{\text {th }}$ derivative of f about $x=0$, for $n \geq 2$. Use the Taylor Series for f about $x=0$ and the Taylor Series for e^{x} about $x=0$ to find $f(x)-4 e^{x}$.

$$
\begin{aligned}
& f^{(n)}(0)=4 \text { for } n \geq 2 \\
& f(x)=2+3 x+2 x^{2}+\frac{4 x^{3}}{3!}+\frac{4 x^{4}}{4!}+\cdots \\
& 4 e^{x}=4\left[1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots\right] \\
&=4+4 x+2 x^{2}+\frac{4 x^{3}}{3!}+\frac{4 x^{4}}{4!}+\cdots \\
& f(x)-4 e^{x}=-2-x
\end{aligned}
$$

