Calculus

Write your questions and thoughts here!

10.15 Representing Functions as Power Series

Notes

Recall:

Function	Series (expanded)	Series Notation	Int. of Conv.
$e^{x}=$	$1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$	$\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$	$-\infty<x<\infty$
$\sin x=$	$x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots$	$\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$	$-\infty<x<\infty$
$\cos x=$	$1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots$	$\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$	$-\infty<x<\infty$
$\frac{1}{1+x}=$	$1-x+x^{2}-x^{3}+\cdots$	$\sum_{n=0}^{\infty}(-1)^{n} x^{n}$	$-1<x<1$

1. If $f(x)=\sum_{n=0}^{\infty} \frac{x^{5 n}}{n!}$ then $f^{\prime}(x)=$
2. Write the first 4 nonzero terms for the Maclaurin series that represents $\int_{0}^{x} \sin \left(t^{7}\right) d t$.

10.15 Representing Functions as Power Series

1. What is the coefficient of x^{2} in the Taylor Series for the function $f(x)=\sin ^{2} x$ about $x=0$?
2. If the function f is defined as $f(x)=\sum_{n=1}^{\infty} \frac{x^{2 n}}{n!}$, then what is $f^{\prime}(x)$? Write the first four nonzero terms and the
general term.
3. Use the power series expansion for $\cos x^{6}$ to evaluate the integral $\int_{0}^{x} \cos t^{6} d t$. Write the first four nonzero terms and the general term.
4. For $x>0$, the power series defined by $1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\cdots+\frac{(-1)^{n} x^{2 n}}{(2 n+1)!}$ converges to which of the following?
(A) $\cos x$
(B) $\sin x$
(C) $\frac{\sin x}{x}$
(D) $e^{x}-e^{x^{2}}$
5. It is known that the Maclaurin series for $\frac{1}{1-x}$ is $\sum_{n=0}^{\infty} x^{n}$. Use this fact to assist in finding the first four nonzero terms and the general term for the power series expansion for the function $\frac{x^{2}}{1-x^{2}}$.
6. Let f be the function with initial condition $f(0)=0$ and derivative $f^{\prime}(x)=\frac{1}{1+x^{7}}$. Write the first four nonzero terms of the Maclaurin series for the function f.
7. Find the Maclaurin series for the function $f(x)=e^{3 x}$. Write the first four nonzero terms and the general term.
8. If a function has the derivative $f^{\prime}(x)=\sin \left(x^{2}\right)$ and initial conditions $f(0)=0$, write the first four nonzero terms of the Maclaurin series for f.
9. The function f has derivatives of all orders and the Maclaurin series for the function f is given by $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+3}$. Find the Maclaurin series for the derivative $f^{\prime}(x)$. Write the first four nonzero terms and the general term.
10. Let the function f be defined by $f(x)=\frac{1}{1-x}$. Find the Maclaurin series for the derivative f^{\prime}. Write the first four nonzero terms and the general term.
11. Find the second-degree Taylor Polynomial for the function $f(x)=\frac{\cos x}{1-x}$ about $x=0$.
12. What is the coefficient of x^{2} in the Maclaurin series for the function $f(x)=\left(\frac{1}{1+x}\right)^{2}$?
13. Find the Maclaurin series for the function $f(x)=x \cos x^{2}$. Write the first four nonzero terms and the general term.
14. Given that f is a function that has derivatives of all orders and $f(1)=3, f^{\prime}(1)=-2, f^{\prime \prime}(1)=2$, and $f^{\prime \prime \prime}(1)=4$. Write the second-degree Taylor Polynomial for the derivative f^{\prime} about $x=1$ and use it to find the approximate value of $f^{\prime}(1.2)$.
15. Let the fourth-degree Taylor Polynomial be defined by $T=7-3(x-4)+5(x-4)^{2}-2(x-4)^{3}+$ $6(x-4)^{4}$ for the function f about $x=4$. Find the third-degree Taylor Polynomial for f^{\prime} about $x=4$ and then use it to approximate $f^{\prime}(4.2)$.

10.15 Representing Functions as Power Series

16. Given a function defined by $f(x)=\frac{\cos (2 x)-1}{x^{2}}$ for $x \neq 0$ and is continuous for all real numbers x.
a. What is the limit of the function $f(x)$ as x approaches 0 ?
b. Write the first four nonzero terms and the general term of the power series that represents the function $h(x)=\cos 2 x$
c. Use the results from part (b) to write the first three nonzero terms for $f(x)=\frac{\cos (2 x)-1}{x^{2}}$.
d. Use the results from part (c) to determine if the function $f(x)=\frac{\cos (2 x)-1}{x^{2}}$ has a relative maximum, a relative minimum or neither at $x=0$. Justify your answer.
