10.15 Representing Functions as Power Series

Cal.culus 60 Lv\f ioNs m

1. What is the coefficient of x? in the Taylor Series for the function f(x) = sin? x about x = 0?
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2. Ifthe function f is defined as f(x) = Z — then what is f'(x)? Write the first four nonzero terms and the
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3. Use the power series expansion for cos x° to evaluate the integral | (;C cos t® dt. Write the first four nonzero
terms and the general term.
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4. Forx > 0, the power series defined by 1 — — + et (2 oY
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converges to which of the following?
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5. It is known that the Maclaurin series for T8 Z x" Use this fact to assist in finding the first four nonzero

terms and the general term for the power series g)zi([))ansion for the function :;.
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6. Let f be the function with initial condition f(0) = 0 and derivative f'(x) = ol Write the first four nonzero

terms of the Maclaurin series for the function f.
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7. Find the Maclaurin series for the function f(x) = e3*. Write the first four nonzero terms and the general term.
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8. Ifa function has the derivative f'(x) = sin(x?) and initial conditions f(0) = 0, write the first four nonzero
terms of the Maclaurin series for f.
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9. The function f has derivatives of all orders and the Maclaurin series for the function f is given by
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CL . Find the Maclaurin series for the derivative f'(x). Write the first four nonzero terms and the
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10. Let the function f be defined by f(x) = i Find the Maclaurin series for the derivative f’. Write the first

four nonzero terms and the general term.
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11. Find the second-degree Taylor Polynomial for the function f(x) =

Y
CDS;<-|~ _}é‘..‘.,-

D 3
< = |+><+><*X1'~~

(Cs)(i) = (- _r\(l +x+x> e olence, |
| + % 4 % = l _i_}’g

Py
|+ 4+ X
R

2
12. What is the coefficient of x2 in the Maclaurin series for the function f(x) = (ﬁ) ?
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13. Find the Maclaurin series for the function f (x) = x cos x?
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14. Given that f is a function that has derivatives of all orders and f(1) =3, f'(1) = =2, f"(1) = 2, and

f"'(1) = 4. Write the second-degree Taylor Polynomial for the derivative f’ about x = 1 and use it to find the
approximate value of f'(1.2).
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15. Let the fourth-degree Taylor Polynomial be defined by T = 7 — 3(x — 4) + 5(x — 4)? — 2(x — 4)3

+
6(x — 4)* for the function f about x = 4. Find the third-degree Taylor Polynomial for f' about x = 4 and then
use it to approximate f'(4.2).
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10.15 Representing Functions as Power Series Test Prep

16. Given a function defined by f(x) = Cos(jﬁ

for x # 0 and is continuous for all real numbers x.
a. What is the limit of the function f (x) as x approaches 0?
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b. Write the first four nonzero terms and the general term of the power series that represents the function
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c. Use the results from part (b) to write the first three nonzero terms for f(x) =
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d. Use the results from part (¢) to determine if the function f(x) = has a relative maximum, a

relative minimum or neither at x = 0. Justify your answer.
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