1. Calculator active. Given the infinite series: $1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \cdots$, find the sequence of partial sums S_1, S_2, S_3, S_4 , and S_5 .

2. Find the *n*th partial sum for the infinite series $\sum_{n=1}^{\infty} \frac{1}{5^n}$.

- 3. The infinite series $\sum_{n=1}^{\infty} \frac{3}{4^{n+1}}$ has *n*th partial sum $S_n = \frac{1}{4} \frac{1}{4^{n+1}}$. What is the sum of the series?
- 4. If the infinite series $\sum_{n=1}^{\infty} a^n$ has *n*th partial sum $S_n = \frac{4}{3}(4^n 1)$ for $n \ge 1$. What is the sum of the series?
- 5. Does the series $\sum_{n=1}^{\infty} \left(\frac{1}{2n-1} \frac{1}{2n+1} \right)$ converge or diverge? If it converges find its sum.

1 = mus , converges, sum = 1	3. <u>1</u> /4.	$5. S_n = \frac{1}{2} \left(1 - \frac{5n}{2}\right)$	1. 1, 1.25, 1.3611, 1.4236, 1.4636
------------------------------	-----------------	--	------------------------------------