1. **Calculator active.** Given the infinite series: $3 - \frac{9}{2} + \frac{27}{4} - \frac{81}{8} + \frac{243}{16} - \cdots$, find the sequence of partial sums S_1, S_2, S_3, S_4 , and S_5 .

2. Find the *n*th partial sum for the infinite series $\sum_{n=1}^{\infty} \frac{1}{6^n}$.

3. The infinite series
$$\sum_{n=1}^{\infty} \frac{3}{5^{n+1}}$$
 has *n*th partial sum $S_n = \frac{3}{4} \left(\frac{1}{5} - \frac{1}{5^{n+1}} \right)$. What is the sum of the series?

4. If the infinite series
$$\sum_{n=1}^{\infty} a^n$$
 has *n*th partial sum $S_n = \frac{3^{2n+1}-1}{3^n}$ for $n \ge 1$. What is the sum of the series?

5. Does the series
$$\sum_{n=1}^{\infty} \left(\frac{2}{n} - \frac{2}{n+2}\right)$$
 converge or diverge? If it converges find its sum.

5. Converges, sum = 3	4. Diverges	$3. \frac{3}{20}$	$\zeta \cdot S^u = \frac{1}{2} \left(1 - \frac{1}{2} \right)$	I. 3' - J.S, 5.25, -4.875, 10.3125	

Answers to 10.1 CA #2