Calculus

Write your questions and thoughts here!

Recall: Writing terms of a sequence.

$$
\begin{aligned}
& a_{n}=\left\{1+(-2)^{n}\right\} \\
& -1,5,-7,17,-31
\end{aligned}
$$

Sequence: A collection of numbers that are in one-to-one correspondence with positive integers.

$$
\begin{array}{lllll}
-2 & 4 & -\frac{26}{6} & \frac{80}{24} & -\frac{242}{120}
\end{array}
$$

Monotonic Sequences never decreases or never increases	Bounded Sequences
$a_{1} \leq a_{2} \leq a_{3} \leq \cdots \leq a_{n}$	$a_{n} \leq M$ (upper bound / above)
or	$a_{n} \geq N$ (lower bound / below)
$a_{1} \geq a_{2} \geq a_{3} \geq \cdots \geq a_{n}$	$\left\{a_{n}\right\}$ bounded if both are true

Infinite Series:

$$
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}
$$

Partial Sum:

$$
S_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}
$$

a_{n} vs $S_{n}:$
a_{n} is an expression that gives the
S_{n} is an expression that gives the

1. Use the following sequence $2,4,6,8,10$ to find a_{4} and S_{4}.

$$
\sum_{n=1}^{\infty} a_{n}=
$$

Convergent and Divergent Series

For the infinite series $\sum_{n=1}^{\infty} a_{n}$, the $n^{\text {th }}$ partial sum is $S_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}$.
If the sequence of the partial sum $\left\{S_{n}\right\}$
limit S is called the sum of the series.
to S, then the series $\sum_{n=1}^{\infty} a_{n}$
The

Likewise, if $\left\{S_{n}\right\} \quad$ then the series
2. Does the series converge or diverge? $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$
3. Use a calculator to find the partial sum S_{n} of the series $\sum_{n=1}^{\infty} \frac{10}{n(n+2)}$ for $n=200,1000$.
4. Does the series converge or diverge? $\sum_{n=1}^{\infty} n$

10.1 Convergent and Divergent Infinite Series

Calculus

1. Given the infinite series $\sum_{n=1}^{\infty}(-1)^{n}$, find the sequence of partial sums $S_{1}, S_{2}, S_{3}, S_{4}$, and S_{5}.
2. Find the sequence of partial sums $S_{1}, S_{2}, S_{3}, S_{4}$, and S_{5} for the infinite series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{10}+\cdots$.
3. If the infinite series $\sum_{n=1}^{\infty} a^{n}$ has nth partial sum $S_{n}=(-1)^{n+1}$ for $n \geq 1$, what is the sum of the series?
4. The infinite series $\sum_{n=1}^{\infty} a^{n}$ has nth partial sum $S_{n}=\frac{n}{4 n+1}$ for $n \geq 1$. What is the sum of the series?
5. Use a calculator to find the partial $\operatorname{sum} S_{n}$ of the series $\sum_{n=1}^{\infty} \frac{6}{n(n+3)}$ for $n=100,500,1000$.
6. Show that the sequence with the given nth term $a_{n}=1+2 n$ is monotonic.
7. What is the nth partial sum of the infinite series $\sum_{n=1}^{\infty} \frac{1}{2^{n+1}}$?

10.1 Convergent and Divergent Infinite Series

8. Which of the following could be the nth partial sum for the infinite series $\sum_{n=1}^{\infty} \frac{1}{4^{n}}$?
(A) $S_{n}=\frac{1}{3}\left(1+\frac{1}{4^{n}}\right)$
(B) $S_{n}=\frac{1}{3}\left(1-\frac{1}{4^{n+1}}\right)$
(C) $S_{n}=\frac{1}{3}\left(1-\frac{1}{4^{n}}\right)$
(D) $S_{n}=\frac{1}{4}\left(1-\frac{1}{3^{n}}\right)$
9. If the infinite series $\sum_{n=1}^{\infty} a_{n}$ is convergent and has a sum of $\frac{7}{8}$, which of the following could be the nth partial
sum?
(A) $S_{n}=\frac{7 n+1}{8 n^{2}+1}$
(B) $S_{n}=\frac{7 n^{2}+1}{8 n+1}$
(C) $S_{n}=2\left(\frac{7}{8}-\frac{1}{n+2}-\frac{1}{n+3}\right)$
(D) $S_{n}=\left(\frac{7}{8}-\frac{1}{n+2}-\frac{1}{n+3}\right)$
10. Which of the following sequences with the given nth term is bounded and monotonic?
(A) $a_{n}=2+(-1)^{n}$
(B) $a_{n}=\frac{n^{2}}{n+1}$
(C) $a_{n}=\frac{3 n}{n+2}$
(D) $a_{n}=\frac{\cos n}{n}$
