1. Given the infinite series $\sum_{n=1}^{\infty}(-1)^{n}$, find the sequence of partial sums $S_{1}, S_{2}, S_{3}, S_{4}$, and S_{5}.

$$
\begin{array}{ll}
S_{1}=-1 & S_{3}=S_{2}-1=-1 \\
S_{2}=S_{1}+1=0 & S_{4}=S_{3}+1=0
\end{array}
$$

2. Find the sequence of partial sums $S_{1}, S_{2}, S_{3}, S_{4}$, and S_{5} for the infinite series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{10}+\cdots$.

$$
\begin{array}{ll}
S_{1}=1 & S_{3}=\frac{3}{2}+\frac{1}{4}=7 / 4 \\
S_{2}=3 / 2 & S_{4}=\frac{7}{4}+\frac{1}{6}=23 / 2
\end{array}
$$

3. If the infinite series $\sum_{n=1}^{\infty} a^{n}$ has nth partial $\operatorname{sum} S_{n}=(-1)^{n+1}$ for $n \geq 1$, what is the sum of the series?

$$
\lim _{n \rightarrow \infty} S_{n}^{n=1} \quad \text { diverges }-1,1,-1,1,-1, \ldots
$$

4. The infinite series $\sum_{n=1}^{\infty} a^{n}$ has nth partial sum $S_{n}=\frac{n}{4 n+1}$ for $n \geq 1$. What is the sum of the series?

$$
\lim _{n \rightarrow \infty} \frac{n}{4 n+1}=1 / 4
$$

5. Use a calculator to find the partial sum S_{n} of the series $\sum_{n=1}^{\infty} \frac{6}{n(n+3)}$ for $n=100,500,1000$.

$$
S_{100}=3.6078 \quad S_{500} \approx 3.6547 \quad S_{1000} \approx 3.6606
$$

6. Show that the sequence with the given nth term $a_{n}=1+2 n$ is monotonic.

$$
a_{1}=3 \quad a_{2}=5 \quad a_{3}=7 \quad a_{4}=9
$$

a_{n} is monotonic because $a_{1} \leq a_{2} \leq a_{3} \leq \cdots \leq a_{n}$
7. What is the nth partial sum of the infinite series $\sum_{n=1}^{\infty} \frac{1}{2^{n+1}}$?

$$
\begin{aligned}
& S_{n}=\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\cdots \frac{1}{2^{n+1}} \\
& \frac{1}{2} S_{n}=\frac{1}{2^{2}}+\frac{1}{2^{4}}+\frac{1}{2^{5}}+\cdots \frac{1}{2^{n+2}} \\
& S_{n}-\frac{1}{2} S_{n}=\frac{1}{2}-\frac{1}{2^{n+2}} \\
& \begin{aligned}
\frac{1}{2} S_{n} & =\frac{1}{2^{2}}-\frac{1}{2^{n+2}} \\
S_{n} & =2\left[\frac{1}{2^{2}}-\frac{1}{2^{n+2}}\right]
\end{aligned} \\
& S_{n}=\frac{1}{2}-\frac{1}{2^{n+1}}
\end{aligned}
$$

8. Which of the following could be the nth partial sum for the infinite series $\sum_{n=1}^{\infty} \frac{1}{4^{n}}$?

$$
\begin{aligned}
& S_{n}=\frac{1}{4}+\frac{1}{4^{2}}+\frac{1}{4^{3}}+\cdots+\frac{1}{4^{n}} \\
& \frac{1}{4} S_{n}=\frac{1}{4^{2}}+\frac{1}{4^{3}}+\frac{1}{4^{4}}+\cdots \frac{1}{4^{n+1}} \\
& S_{n}-\frac{1}{4} S_{n}=\frac{1}{4}-\frac{1}{4^{n+1}}
\end{aligned} \quad \leftrightarrow \begin{aligned}
& \frac{3}{4} S_{n=1}^{S_{n} 4^{n}}=\frac{1}{4}-\frac{1}{4^{n+1}} \\
& 3 S_{n}=1-\frac{1}{4^{n}} \\
& S_{n}=\frac{1}{3}\left(1-\frac{1}{4^{n}}\right)
\end{aligned}
$$

(A) $S_{n}=\frac{1}{3}\left(1+\frac{1}{4^{n}}\right)$
(B) $S_{n}=\frac{1}{3}\left(1-\frac{1}{4^{n+1}}\right)$
(C) $S_{n}=\frac{1}{3}\left(1-\frac{1}{4^{n}}\right)$
(D) $S_{n}=\frac{1}{4}\left(1-\frac{1}{3^{n}}\right)$
9. If the infinite series $\sum_{n=1}^{\infty} a_{n}$ is convergent and has a sum of $\frac{7}{8}$, which of the following could be the nth partial
sum?

$$
\lim _{n \rightarrow \infty} S_{n}=\frac{7}{8}
$$

(A) $S_{n}=\frac{7 n+1}{8 n^{2}+1} \longrightarrow \mathbf{O}$
(B) $S_{n}=\frac{7 n^{2}+1}{8 n+1} \longrightarrow \infty$
(C) $S_{n}=2\left(\frac{7}{8}-\frac{1}{n+2}-\frac{1}{n+3}\right) \rightarrow 14 / 8$
(D) $S_{n}=\left(\frac{7}{8}-\frac{1}{n+2}-\frac{1}{n+3}\right) \rightarrow \frac{7}{8}$
10. Which of the following sequences with the given nth term is bounded and monotonic?

(A) $a_{n}=2+(-1)^{n}$

(B) $a_{n}=\frac{n^{2}}{n+1}$
bounded,
monotonic
(C) $a_{n}=\frac{3 n}{n+2}$
banded, not monotonic
(D) $a_{n}=\frac{\cos n}{n}$

