Recall: What is a geometric sequence?
A geometric sequence is one in which the same number is to each term to get the next
term in the sequence. The number you multiply by is called the

$\boldsymbol{n}^{\text {th }}$ Term of a Geometric Sequence

The nth term of a geometric sequence with first term a_{1} and common ratio r is given by:

$$
a_{n}=\quad \text { or } a_{n}=\quad \text { or } a_{n}=
$$

1. $3,6,12,24,48, \ldots$

$a_{n}=a_{0} r^{n}$	$a_{n}=a_{1} r^{n-1}$	$a_{n}=a_{2} r^{n-2}$
$a_{n}=$	$a_{n}=$	$a_{n}=$

2. $25,5,1, \frac{1}{5}, \frac{1}{25}, \ldots$

$a_{n}=a_{0} r^{n}$	$a_{n}=a_{1} r^{n-1}$	$a_{n}=a_{2} r^{n-2}$
$a_{n}=$	$a_{n}=$	$a_{n}=$

$$
\sum_{n=0}^{\infty} a r^{n}=
$$

$$
a \neq 0
$$

Geometric Infinite Series Convergence

A geometric series with ratio r diverges when
If then the series converges to

$$
\sum_{n=k}^{\infty} a r^{n}=
$$

Where is the first term of the series.

1. $\sum_{n=0}^{\infty} \frac{3}{4^{n}}$
2. $\sum_{n=2}^{\infty} \frac{3^{n+1}}{4^{n}}$
3. For what value of r does the infinite series $\sum_{n=0}^{\infty} 17 r^{n}$ equal 23 ?
4. Calculator active. If $f(x)=\sum_{n=3}^{\infty}\left(\sin ^{2}\left(\frac{x}{3}\right)\right)^{n}$, then $f(7)=$
10.2 Working with Geometric Series

Calculus

Find the value of each infinite series.

1. $\sum_{n=1}^{\infty}-\frac{7}{(-3)^{n}}$
2. $\sum_{n=0}^{\infty} \frac{1}{3^{n}}$
3. $\sum_{n=0}^{\infty} e^{n x}$ Let x be a real number, with $x<0$.
4. $\sum_{n=1}^{\infty}\left(\frac{e}{\pi}\right)^{n}$
5. $\sum_{n=1}^{\infty} \frac{3^{n+1}}{5^{n}}$
6. $\sum_{n=1}^{\infty} \frac{2^{n}}{e^{n+1}}$
7. $\sum_{n=0}^{\infty}(-1)^{n} \frac{\pi}{e^{n+1}}$
8. $\sum_{n=0}^{\infty}\left(-\frac{3}{4}\right)^{n}$
9. What is the sum of the infinite series

$$
25+-5+1+-\frac{1}{5}+\frac{1}{25}+\cdots
$$

10. Calculator active. If $f(x)=\sum_{n=1}^{\infty}\left(\sin ^{2} 2 x\right)^{n}$, then
$f(3)=$
11. For what value of a does the infinite series

$$
\sum_{n=0}^{\infty} a\left(\frac{2}{3}\right)^{n}=14
$$

12. Consider the geometric series $\sum_{n=1}^{\infty} a_{n}$ where $a_{n}>0$. The first term of the series $a_{1}=24$, and the third term $a_{3}=6$. What are possible values for a_{2} ?
13. Consider the series $\sum_{n=1}^{\infty} a_{n}$. If $a_{1}=32$ and

$$
\frac{a_{n+1}}{a_{n}}=\frac{1}{4} \text { for all integers } n \geq 1 \text {, then } \sum_{n=1}^{\infty} a_{n}=
$$

14. Use a geometric series to write $0 . \overline{2}$ as the ratio of two integers.

10.2 Working with Geometric Series

Test Prep
15. If x and y are positive real numbers, which of the following conditions guarantees the infinite series $\sum_{n=0}^{\infty} \frac{x^{n+1}}{y^{2 n+1}}$
is geometric and converges?
16. The figure to the right shows a portion of the graph of the differentiable function g. Let h be the function defined by $h(x)=\int_{4}^{x} g(t) d t$. The areas of the regions bounded by the x axis and the graph of g on the intervals, $[0,2],[2,4],[4,8]$ and [8,11] are $6,4,24$, and 19 , respectively.
a. Must there exist a value of c, for $2<c<4$, such that $h(c)=3.5$? Justify your answer.

b. Find the average value of g over the interval, $0 \leq x \leq 11$. Show the computations that lead to your answer.
c. Evaluate $\lim _{x \rightarrow 8} \frac{h(x)-3 x}{x^{2}-64}$.
d. Is there a value r such that the series $30+30 r+30 r^{2}+\cdots+30 r^{n}$ equals the value of $g(6)$?

