10.2 Working with Geometric Series Calculus Find the value of each infinite series.	Solutions Practice
Find the value of each infinite series. 1. $\sum_{n=1}^{\infty} -\frac{7}{(-3)^n}$ $qr' = \frac{7}{3}$ $r = (-\frac{1}{3})^n$	2. $\sum_{n=0}^{\infty} \frac{1}{3^n} \alpha r^{k} = \left \begin{array}{c} \Gamma = \left(\frac{1}{3}\right)^{k} \\ \Gamma < \text{ so it} \\ \text{ converses} \\ \hline 1 - \frac{1}{3^n} = \frac{1}{3^n} = \frac{1}{3^n} \\ (e^n)^{k} \end{array}\right $
3. $\sum_{n=0}^{\infty} e^{nx} \text{ Let } x \text{ be a real number, with } x < 0.$ $\Re(k = 1) \qquad \Gamma = e^{k}$ $ \Gamma < 1, \text{ convergence}$ $\boxed{1} - e^{k}$	4. $\sum_{n=1}^{\infty} \left(\frac{e}{n}\right)^{n} \alpha_{n} \kappa = \frac{e}{m} \left(=\frac{e}{m}\right)^{n} \left(\frac{e}{n}\right)^{n} \alpha_{n} \kappa = \frac{e}{m} \left(\frac{e}{n}\right)^{n} \left(\frac{e}{n$

5.
$$\sum_{n=1}^{\infty} \frac{3^{n+1}}{5^n} = \frac{3^n \cdot 3^n}{5^n} = 3(3^n)^n$$
6.
$$\sum_{n=1}^{\infty} \frac{2^n}{e^{n+1}} = \frac{1}{e^n \cdot e^n} = \frac{1$$

10.2 Working with Geometric Series

Test Prep

15. If x and y are positive real numbers, which of the following conditions guarantees the infinite series $\sum_{n=0}^{\infty} \frac{x^{n+1}}{y^{2n+1}}$ is geometric and converges?

(A)
$$x < y$$
 (B) $x < y^2$ (C) $x > y^2$ (D) $x > y$

b. Find the average value of g over the interval, $0 \le x \le 11$. Show the computations that lead to your answer.

$$\frac{1}{11} \int_{0}^{11} g(x) dx = \frac{1}{11} \left[6 + -4 + 24 + 19 \right]$$

$$\frac{1}{11} \left[45 \right]$$

$$\frac{45}{11}$$

c. Evaluate
$$\lim_{x \to 8} \frac{h(x) - 3x}{x^2 - 64}$$
.
 $h(8) = \int_{4}^{8} g = \lambda 4$
 $\lim_{x \to 8} \frac{\lambda 4 - 3x}{x^2 - 64} = \frac{0}{3}$
 $\lim_{x \to 8} \frac{\lambda 4 - 3x}{x^2 - 64} = \frac{0}{3}$

d. Is there a value r such that the series $30 + 30r + 30r^2 + \dots + 30r^n$ equals the value of g(6)?

9(6)=9

$$g(r)=9$$

First term=30
 $9=\frac{30}{1-r}$
 $9-9r=30$
 $-9r=21$
 $r=-\frac{7}{3}$
No, because this value
series to diverge.
 $9 \operatorname{not} h!$