Find the value of each infinite series.

$$
\begin{aligned}
& \text { 5. } \sum_{n=1}^{\infty} \frac{3^{n+1}}{5^{n}} \quad \frac{3^{n} \cdot 3^{\prime}}{5^{n}}=3\left(\frac{3}{5}\right)^{n} \text { 6. } \sum_{n=1}^{\infty} \frac{2^{n}}{n^{n+1}} \frac{2^{n}}{e^{n} \cdot e^{\prime}}=\frac{1}{e}\left(\frac{2}{e}\right)^{n} \\
& a r^{k}=9 / 5 \quad r=3 / 5 \\
& |r|<1 \text {, so it converges } \quad|r|<1 \text {, so it converges } \\
& \frac{9 / 5}{1-3 / 5}=\frac{9 / 5}{2 / 5}=\frac{9}{5} \cdot \frac{5}{2}=\frac{9}{2} \quad \frac{2}{e^{2}} 1-\frac{e^{2}}{1-} \cdot \frac{e^{2}}{e^{2}}=\frac{2}{e^{2}-2 e} \\
& \text { 7. } \begin{array}{cc|ccc}
\sum_{n=0}^{\infty}(-1)^{n} \frac{\pi}{e^{n+1}} & \frac{n(-1)^{n}}{e^{n} \cdot e^{1}}=\frac{\Gamma}{e}\left(-\frac{1}{e}\right)^{n} & 8 . \sum_{n=0}^{\infty}\left(-\frac{3}{4}\right)^{n} & a r^{k}=1 & r=-\frac{3}{4} \\
|r|<1 & & & & \\
& & & &
\end{array} \\
& a r^{k}=\frac{\pi}{e} \quad r=-\frac{1}{e} \\
& \frac{\frac{\pi}{e}}{1+\frac{1}{e}} \cdot e=\frac{\pi}{e+1} \\
& \frac{1}{1+3 / 4}=\frac{1}{7 / 4} \\
& \text { 9. What is the sum of the infinite series } \\
& 25+-5+1+-\frac{1}{5}+\frac{1}{25}+\cdots \\
& \text { First term }=25 \quad r=-\frac{1}{5} \\
& \frac{25}{1+1 / 5}=\frac{25}{6 / 5}=25 \cdot \frac{5}{6} \\
& 125 / 6
\end{aligned}
$$

$$
\begin{aligned}
& a r^{k}=\left(\sin ^{2}(6)\right)^{\prime} \approx 0.078073 \\
& r=\left[\sin ^{2}(6)\right] \approx \frac{l^{j} \text { store }}{b} \\
& \frac{b}{1-b} \approx 0.0846
\end{aligned}
$$

11. For what value of a does the infinite series

$$
\begin{gathered}
\sum_{n=0}^{\infty} a\left(\frac{2}{3}\right)^{n}=14 \\
a r^{k}=a \\
\frac{a}{1-2 / 3}=14 \\
\frac{a}{\frac{1}{3}}=14 \\
a=14 / 3
\end{gathered}
$$

12. Consider the geometric series $\sum_{n=1}^{\infty} a_{n}$ where $a_{n}>0$.

The first term of the series $a_{1}=24$, and the third term $a_{3}=6$. What are possible values for a_{2} ?

$$
\begin{aligned}
24 \cdot r^{2} & =6 \\
r^{2} & =1 / \frac{1}{4} \\
r & = \pm \frac{1}{2}
\end{aligned}
$$

13. Consider the series $\sum_{n=1}^{\infty} a_{n}$. If $a_{1}=32$ and $\frac{a_{n+1}}{a_{n}}=\frac{1}{4}$ for all integers $n \geq 1$, then $\sum_{n=1}^{\infty} a_{n}=$ This is r.

$$
\frac{32}{1-4_{4}}=\frac{32}{\frac{3}{4}}=32 \cdot \frac{4}{3}=\frac{128}{3}
$$

14. Use a geometric series to write $0 . \overline{2}$ as the ratio of two integers.

$$
\begin{aligned}
0 . \overline{2} & =0.2+0.02+0.002 \ldots \\
& =\frac{2}{10}+\frac{2}{100}+\frac{2}{1000}+\cdots \\
& =\frac{2}{10^{1}}+\frac{2}{10^{2}}+\frac{2}{10^{3}}+\cdots \\
\text { term } & =\frac{2}{10} \quad r=\frac{1}{10} \\
\frac{2}{10} & =\frac{1}{5} \\
1-\frac{1}{90} & =\frac{1}{5} \cdot \frac{10}{9}=\frac{2}{9}
\end{aligned}
$$

$$
\text { First term }=\frac{2}{10}, r=\frac{1}{10}
$$

10.2 Working with Geometric Series
15. If x and y are positive real numbers, which of the following conditions guarantees the infinite series $\sum_{n=0}^{\infty} \frac{x^{n+1}}{y^{2 n+1}}$
is geometric and converges?

$$
\frac{x^{n} \cdot x^{\prime}}{y^{2 n} \cdot y^{\prime}}=\frac{x}{y}\left(\frac{x}{y^{2}}\right)^{n} \int_{r}^{\frac{x}{y^{2}}<1} x<y^{2}
$$

(A) $x<y$
(B) $x<y^{2}$
(C) $x>y^{2}$
(D) $x>y$
16. The figure to the right shows a portion of the graph of the differentiable function g. Let h be the function defined by $h(x)=\int_{4}^{x} g(t) d t$. The areas of the regions bounded by the x axis and the graph of g on the intervals, $[0,2],[2,4],[4,8]$ and [8,11] are $6,4,24$, and 19 , respectively.
a. Must there exist a value of c, for $2<c<4$, such that $h(c)=3.5$? Justify your answer.
b. Find the average value of g over the interval, $0 \leq x \leq 11$. Show the computations that lead to your answer.

$$
\begin{aligned}
\frac{1}{11} \int_{0}^{11} g(x) d x= & \frac{1}{11}[6+-4+24+19] \\
& \frac{1}{11}[45]
\end{aligned}
$$

$$
45 / 1
$$

$45 / 11$
c. Evaluate $\lim _{x \rightarrow 8} \frac{h(x)-3 x}{x^{2}-64}$.

$$
\begin{aligned}
h(8)= & \int_{4}^{8} 9=24 \\
& \lim _{x \rightarrow 8} \frac{24-3 x}{x^{2}-64}=\frac{0}{2}
\end{aligned} \quad \lim _{x \rightarrow 8} \frac{-3}{2 x}=-\frac{3}{16}
$$

d. Is there a value r such that the series $30+30 r+30 r^{2}+\cdots+30 r^{n}$ equals the value of $g(6)$?

$$
\begin{array}{lr}
g(6)=9 & \begin{array}{l}
\text { geometric } \\
\text { First term }=30 \\
\text { if }|r|<1 .
\end{array} \\
& 9=\frac{30}{1-r} \\
& 9-9 r=30 \\
-9 r=21 \\
& r=-\frac{7}{3}
\end{array}
$$

geometric only converges

No, because this value of r would cause the series to diverge.

