For each of the following series, determine the convergence or divergence of the given series. State the reasoning behind your answer.

1. $\sum_{n=1}^{\infty} \frac{3-2 n}{5 n+1} \lim _{n \rightarrow \infty} \frac{3-2 n}{5 n+1}=-2 / 5$

$$
\text { 2. } \sum_{n=1}^{\infty} \frac{3^{n+1}}{5^{n}} \frac{3^{n} \cdot 3}{5^{n}}
$$

Diverges by the $n^{\text {th }}$ Term Test.

$$
\text { 6. } \sum_{n=0}^{\infty} 5\left(\frac{5}{2}\right)^{n} \quad \lim _{n \rightarrow \infty} a_{n}=\infty
$$

Diverges by the $n^{\text {th }}$-Term Test.
or
Diverges because geometric Series with $r>1$
7. The n th-Term Test can be used to determine divergence for which of the following series?
I. $\sum_{n=1}^{\infty} \sin 2 n$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n}= & \text { Limit } \\
& \text { does not } \\
& \text { exist }
\end{aligned}
$$

II. $\sum_{n=1}^{\infty}\left(2+\frac{3}{n}\right)$
III. $\sum_{n=1}^{\infty} \frac{n^{3}+1}{n^{2}}$

$$
\begin{array}{r}
\lim _{n \rightarrow \infty} a_{n}=\infty \\
\text { Diverges }
\end{array}
$$

(C) I and II only
(A) II only
(B) III only
(D) I, II, and III
8. The n th-Term Test can be used to determine divergence for which of the following series?
I. $\sum_{n=1}^{\infty} \ln \left(\frac{n-1}{n}\right)$
II. $\sum_{n=1}^{\infty} \frac{3 n-2 n^{2}}{5 n^{2}}$
III. $\sum_{n=1}^{\infty} 3\left(\frac{5}{4}\right)^{n}$

$$
\begin{gathered}
\lim _{n \rightarrow \infty} a_{n}=\ln (1)=0 \\
\text { unknown }
\end{gathered}
$$

$$
\begin{gathered}
\lim _{n \rightarrow \infty} a_{n}=-2 / 5 \\
\text { Diverges }
\end{gathered}
$$

$$
\begin{gathered}
\lim _{n \rightarrow \infty} a_{n}=\infty \\
\text { Diverges }
\end{gathered}
$$

(A) II only
(B) II and III only
(C) I and II only
(D) I, II, and III
9. If $a_{n}=\cos \left(\frac{\pi}{2 n}\right)$ for $n=1,2,3, \ldots$, which of the following about $\sum_{n=1}^{\infty} a_{n}$ must be true?

$$
\lim _{n \rightarrow \infty} a_{n}=\cos (0)=1 \rightarrow \text { must diverge }
$$

(A) The series converges and $\lim _{n \rightarrow \infty} a_{n}=0$.
(B) The series diverges and $\lim _{n \rightarrow \infty} a_{n}=0$
(C) The series diverges and $\lim _{n \rightarrow \infty} a_{n} \neq 0$
(D) The series converges and $\lim _{n \rightarrow \infty} a_{n} \neq 0$

