## **10.3** The *n*th Term Test for Divergence

## Calculus

**Practice** 

For each of the following series, determine the convergence or divergence of the given series. State the reasoning behind your answer.

1. 
$$\sum_{n=1}^{\infty} \frac{3-2n}{5n+1}$$
 
$$\lim_{n\to\infty} \frac{3-2n}{5n+1} = -\frac{2}{5n}$$
  
Diverges by the n<sup>th</sup>  
Term Test.  
3. 
$$\sum_{n=1}^{\infty} \frac{2n}{7n^{2}+1}$$
 
$$\lim_{n\to\infty} \alpha_{n} = 2$$
  
Diverges by the  
n<sup>th</sup>- Term Test.  
5. 
$$\sum_{n=1}^{\infty} \frac{7^{n}+1}{7^{n}+1} = \frac{7}{7^{n}+1} + \frac{1}{7^{n},7^{1}}$$
  

$$\lim_{n\to\infty} \alpha_{n} = \frac{2}{5n}$$
  

$$\lim_{n\to\infty} \alpha_{n} = 2$$
  

$$\lim_{n\to\infty} \alpha_{n} = 0$$
  

$$\lim_{n\to\infty} \alpha_{n} = \infty$$
  

$$\lim_{n\to\infty$$

## 10.3 The *n*th Term Test for Divergence

- **Test Prep**
- 7. The *n*th-Term Test can be used to determine divergence for which of the following series?



8. The *n*th-Term Test can be used to determine divergence for which of the following series?



9. If 
$$a_n = \cos\left(\frac{\pi}{2n}\right)$$
 for  $n = 1, 2, 3, ...,$  which of the following about  $\sum_{n=1}^{\infty} a_n$  must be true?  
 $\lim_{n \to \infty} a_n = \cos(n) = 1 \longrightarrow \text{must diverge}$ 

(A) The series converges and  $\lim_{n \to \infty} a_n = 0$ .

(C) The series diverges and  $\lim_{n \to \infty} a_n \neq 0$ 

(B) The series diverges and  $\lim_{n \to \infty} a_n = 0$ 

