10.4 Integral Test for Convergence

Solutions

Practice

If the Integral Test applies, use it to determine whether the series converges or diverges.

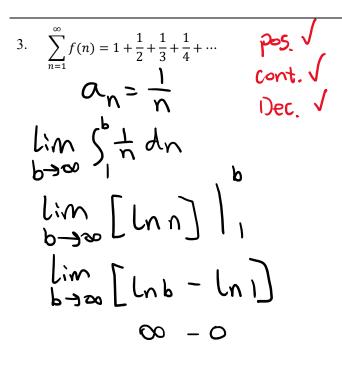
II the integral rest a	ppines, use it to u	ctel mime wheth
1. $\sum_{n=1}^{\infty} \frac{n}{e^n}$ $\lim_{n \to \infty} \int_{-\infty}^{\infty} ne^{-n} dx$	pos, cont,	de Creasing
) ' ' '	J ~ 04
-ne-n+51-e-n	φV	g=-e'''
lim [-ne-n- lim [h		١ ,)
$\lim_{b\to\infty} \left[-\frac{b}{e^{b}} \right]$	$\frac{1}{e}$	$\left[-\frac{1}{e} - \frac{1}{e}\right]$
U	+0-	$\left[-\frac{4}{e}\right]$

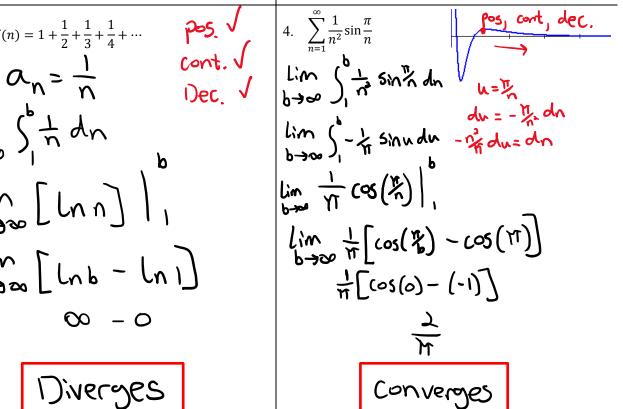
2.
$$\sum_{n=1}^{\infty} f(n) = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \cdots$$

$$Cont. \checkmark$$

$$Con$$

Converges





5.
$$\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$$

$$\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$$

$$\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$$
6.
$$\sum_{n=1}^{\infty} \frac{n^{k-1}}{n^k + 2}$$
, where k is a positive integer. Assume the series meets the criteria for the Integral Test.
$$\lim_{k \to \infty} \int_{1}^{k} \frac{1}{k} \, dx \qquad \lim_{k \to$$

$$\lim_{b\to\infty} \int_{1}^{b} \frac{1}{k u} du \qquad u = n^{k} + 1$$

$$\lim_{b\to\infty} \frac{1}{k} \ln |n^{k} + 2| \frac{1}{k n^{k-1}} = dn$$

$$\lim_{b\to\infty} \frac{1}{k} \left[\ln |b^{k} + 2| - \ln |1^{k} + 2| \right]$$

$$\lim_{b\to\infty} \frac{1}{k} \left[\ln |b^{k} + 2| - \ln |1^{k} + 2| \right]$$

$$\lim_{b\to\infty} \frac{1}{k} \left[\ln |b^{k} + 2| - \ln |1^{k} + 2| \right]$$

$$\lim_{b\to\infty} \frac{1}{k} \left[\ln |b^{k} + 2| - \ln |1^{k} + 2| \right]$$

$$\lim_{b\to\infty} \frac{1}{k} \left[\ln |b^{k} + 2| - \ln |1^{k} + 2| \right]$$

$$\lim_{b\to\infty} \frac{1}{k} \left[\ln |b^{k} + 2| - \ln |1^{k} + 2| \right]$$

$$\lim_{b\to\infty} \frac{1}{k} \left[\ln |b^{k} + 2| - \ln |1^{k} + 2| \right]$$

$$\lim_{b\to\infty} \frac{1}{k} \left[\ln |b^{k} + 2| - \ln |1^{k} + 2| \right]$$

$$\lim_{b\to\infty} \frac{1}{k} \left[\ln |b^{k} + 2| - \ln |1^{k} + 2| \right]$$

$$\lim_{b\to\infty} \frac{1}{k} \left[\ln |b^{k} + 2| - \ln |1^{k} + 2| \right]$$

$$\lim_{b\to\infty} \frac{1}{k} \left[\ln |b^{k} + 2| - \ln |1^{k} + 2| \right]$$

$$\lim_{b\to\infty} \frac{1}{k} \left[\ln |b^{k} + 2| - \ln |1^{k} + 2| \right]$$

$$\lim_{b\to\infty} \frac{1}{k} \left[\ln |b^{k} + 2| - \ln |1^{k} + 2| \right]$$

$$\lim_{b\to\infty} \frac{1}{k} \left[\ln |b^{k} + 2| - \ln |1^{k} + 2| \right]$$

$$\lim_{b\to\infty} \frac{1}{k} \left[\ln |b^{k} + 2| - \ln |1^{k} + 2| \right]$$

$$\lim_{b\to\infty} \frac{1}{k} \left[\ln |b^{k} + 2| - \ln |1^{k} + 2| \right]$$

7. Let f be a positive, continuous, and decreasing function. If $\int_1^\infty f(x) dx = 4$, which of the following statements about the series $\sum f(n)$ must be true?

n=1 means Left rectangular approx. Overestimate

A.
$$\sum_{n=1}^{\infty} f(n) = 0$$

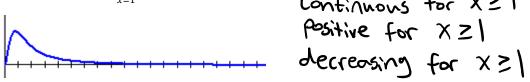
B. $\sum_{n=1}^{\infty} f(n)$ converges, and $\sum_{n=1}^{\infty} f(n) > 4$

$$A. \quad \sum_{n=1}^{\infty} f(n) = 0$$

D.
$$\sum_{n=0}^{\infty} f(n)$$
 diverges, and $\sum_{n=0}^{\infty} f(n) = 0$

- C. $\sum_{n=0}^{\infty} f(n)$ converges, and $\sum_{n=0}^{\infty} f(n) < 4$
- 8. Explain why the Integral Test does not apply for the series $\sum e^x \sin x$.

9. Show that the series $\sum_{x=1}^{\infty} \frac{\tan^{-1} x}{x^2 + 1}$ meets the criteria to apply the Integral Test for convergence.



- 10. Let f be positive, continuous, and decreasing on $[1, \infty)$, such that $a_n = f(n)$. If $\sum a_n = 7$, which of the following must be true? following must be true?
 - A. $\lim_{n\to\infty} a_n = 7$

B. $\int_{1}^{\infty} f(x) dx = 7$

C. $\int_{1}^{\infty} f(x) dx$ diverges

- D. $\int_{1}^{\infty} f(x) dx$ converges
- 11. Which of the following can be used to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n+3}{n+4}$?

 X. I. Properties of Geometric Series Not Seometric

 X. II. nth-Term Test Lim 143

 X. III. Integral Test $\frac{1}{n+4}$?

 - A. I only

B. II only

C. III only

- D. II and III only
- E. I, II, and III
- 12. Which of the following can be used to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$?

 I. Properties of Geometric Series

 II. nth-Term Test

 III. Integral Test

 Pos. Cent. dec.

A. I only

B. II only

C. III only

- D. I and II only
- E. I and III only

10.4 Integral Test for Convergence

Test Prep

- 13. Consider the infinite series $\sum \frac{1}{n^3}$. The integral test can be used to determine convergence or divergence of the series because $f(x) = \frac{1}{x^3}$ is positive, continuous, and decreasing on $[1, \infty)$. Which of the following is true?
 - A. $1 + \int_{1}^{\infty} \frac{1}{x^{3}} dx < \sum_{n=1}^{\infty} \frac{1}{n^{3}} < \int_{1}^{\infty} \frac{1}{x^{3}} dx$
- B. $\int_{1}^{\infty} \frac{1}{x^3} dx < \sum_{n=1}^{\infty} \frac{1}{n^3} < 1 + \int_{1}^{\infty} \frac{1}{x^3} dx$
- C. $\sum_{n=0}^{\infty} \frac{1}{n^3} < \int_{1}^{\infty} \frac{1}{x^3} dx < 1 + \int_{1}^{\infty} \frac{1}{x^3} dx$
- D. $\int_{1}^{\infty} \frac{1}{x^{3}} dx < 1 + \int_{1}^{\infty} \frac{1}{x^{3}} dx < \sum_{n=1}^{\infty} \frac{1}{n^{3}}$