Comparison Test

Let $0<a_{n} \leq b_{n}$ for all n.

$$
\begin{aligned}
& \text { If } \sum_{n=1}^{\infty} b_{n} \text { converges, then } \sum_{n=1}^{\infty} a_{n} \\
& \text { If } \sum_{n=1}^{\infty} a_{n} \text { diverges, then } \sum_{n=1}^{\infty} b_{n}
\end{aligned}
$$

Determine if the following series converge or diverge.

1. $\sum_{n=1}^{\infty} \frac{1}{3+2^{n}}$
2. $\sum_{n=1}^{\infty} \frac{1}{4^{n}-3}$
3. $\sum_{n=1}^{\infty} \frac{1}{7 n^{2}+4}$

Limit Comparison Test

If $a_{n}>0, b_{n}>0$ and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$ (where L is finite and positive), then

$$
\sum_{n=1}^{\infty} a_{n} \text { and } \sum_{n=1}^{\infty} b_{n}
$$

Determine if the following series converge or diverge.

4. $\sum_{n=1}^{\infty} \frac{2 n^{2}-2}{5 n^{5}+3 n+1}$
5. $\sum_{n=1}^{\infty} \frac{1}{5 n^{2}+5 n+5}$
6. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{3 n+2}}$
7. $\sum_{n=1}^{\infty} \frac{n^{3}-7}{2 n^{5}+n^{2}+n+1}$
8. $\sum_{n=1}^{\infty} \frac{n 3^{n}}{4 n^{3}+2}$
9. $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^{3}+n}}$
10. Which of the following statements about convergence of the series $\sum_{n=1}^{\infty} \frac{1}{\ln (n+2)}$ is true?
(A) $\quad \sum_{n=1}^{\infty} \frac{1}{\ln (n+2)}$ converges by comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$
(B) $\quad \sum_{n=1}^{\infty} \frac{1}{\ln (n+2)}$ converges by comparison with $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}}}$
(C) $\quad \sum_{n=1}^{\infty} \frac{1}{\ln (n+2)}$ diverges by comparison with $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}}}$
(D) $\quad \sum_{n=1}^{\infty} \frac{1}{\ln (n+2)}$ diverges by comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$
11. Which of the following series converges?
(A) $\quad \sum_{n=1}^{\infty} \frac{3 n}{n^{3}+2}$
(B) $\sum_{n=1}^{\infty} \frac{5 n}{2 n+1}$
(C) $\quad \sum_{n=1}^{\infty} \frac{7 n}{n^{2}+1}$
(D) $\quad \sum_{n=1}^{\infty} \frac{5^{n}}{4^{n}+1}$
12. Use the Comparison Test to determine whether the series $\sum_{n=1}^{\infty} \frac{1}{2+5^{n}}$ converges or diverges.
13. Which of the following series can be used with the Limit Comparison Test to determine convergence of the series $\sum_{n=1}^{\infty} \frac{n^{3}}{n^{4}+3}$?
(A) $\quad \sum_{n=1}^{\infty} \frac{n}{n+3}$
(B) $\sum_{n=1}^{\infty} \frac{1}{n^{3}+3}$
(C) $\quad \sum_{n=1}^{\infty} \frac{1}{n}$
(D) $\quad \sum_{n=1}^{\infty} \frac{1}{n^{4}}$
14. Consider the series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$, where $a_{n}>0$ and $b_{n}>0$ for $n \geq 1$. If $\sum_{n=1}^{\infty} a_{n}$ diverges which of the following must be true?
(A) If $a_{n} \leq b_{n}$, then $\sum_{n=1}^{\infty} b_{n}$ converges.
(B) If $a_{n} \leq b_{n}$, then $\sum_{n=1}^{\infty} b_{n}$ diverges.
(C) If $b_{n} \leq a_{n}$, then $\sum_{n=1}^{\infty} b_{n}$ converges.
(D) If $b_{n} \leq a_{n}$, then $\sum_{n=1}^{\infty} b_{n}$ diverges.
15. Consider the series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$, where $a_{n}>0$ and $b_{n}>0$ for $n \geq 1$. If $\sum_{n=1}^{\infty} b_{n}$ converges which of the following must be true?
(A) If $a_{n} \leq b_{n}$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.
(B) If $a_{n} \leq b_{n}$, then $\sum_{n=1}^{\infty} a_{n}$ converges.
(C) If $b_{n} \leq a_{n}$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.
(D) If $b_{n} \leq a_{n}$, then $\sum_{n=1}^{\infty} a_{n}$ converges.
16. Let $a>0, b>0$, and $c>0$. Determine whether the series $\sum_{n=0}^{\infty} \frac{1}{a n^{2}+b n+c}$ converges or diverges.
17. Determine the convergence or divergence of the series $\sum_{n=2}^{\infty} \frac{1}{6^{n}+6}$.
18. For the series $\sum_{n=1}^{\infty} \frac{n 3^{n}}{2 n^{4}-2}$, which of the following could be used with the Limit Comparison Test?
(A) $\quad \sum_{n=1}^{\infty} \frac{1}{n^{4}}$
(B) $\sum_{n=1}^{\infty} \frac{3^{n}}{n^{4}}$
(C) $\quad \sum_{n=1}^{\infty} \frac{1}{n^{3}}$
(D) $\quad \sum_{n=1}^{\infty} \frac{3^{n}}{n^{3}}$
19. Which of the following can be used with the Comparison Test to determine the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{2+\sqrt{n}}$?
(A) $\quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
(B) $\sum_{n=1}^{\infty} \frac{1}{n}$
(C) $\quad \sum_{n=1}^{\infty} \frac{1}{n^{2}}$
(D) $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}$
20. Which of the following series diverge?
I. $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{n}$
II. $\sum_{n=1}^{\infty} \frac{1}{n^{3}-27}$
III. $\sum_{n=1}^{\infty} \frac{1}{4^{n}+1}$
(A) I only
(B) II only
(C) I and II only
(D) I, II, and III
21. Consider the series $\sum_{n=2}^{\infty} \frac{1}{n^{p} \ln n}$, where $p \geq 0$. For what values of p is the series convergent?
22. Determine whether the series $\sum_{n=1}^{\infty} \frac{n-3}{n^{3}}$ converges or diverges.
23. Consider the series $1+\frac{1}{5}+\frac{1}{9}+\frac{1}{13}+\cdots=\sum_{n=1}^{\infty} \frac{1}{4 n-3}$. Use the Limit Comparison Test with the series $\sum_{n=1}^{\infty} \frac{1}{4 n}$ to determine the convergence of the series.
24. Consider the series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$, where $a_{n}>0$ and $b_{n}>0$ for $n \geq 1$. If $a_{n} \leq b_{n}$, then which of the following must be true?
(A) If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty} b_{n}$ diverges.
(B) If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty} b_{n}$ converges.
(C) If $\sum_{n=1}^{\infty} a_{n}$ diverges, then $\sum_{n=1}^{\infty} b_{n}$ diverges.
(D) If $\sum_{n=1}^{\infty} a_{n}$ diverges, then $\sum_{n=1}^{\infty} b_{n}$ converges.
25. Consider the series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$, where $a_{n}>0$ and $b_{n}>0$ for $n \geq 1$. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=2$, then which of the following must be true?
I. If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty} b_{n}$ diverges.
II. If $\sum_{n=1}^{\infty} a_{n}$ diverges, then $\sum_{n=1}^{\infty} b_{n}$ converges.
III. If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty} b_{n}$ converges.
IV. If $\sum_{n=1}^{\infty} a_{n}$ diverges, then $\sum_{n=1}^{\infty} b_{n}$ diverges.
(A) I only
(B) II only
(C) III only
(D) IV only
(E) I and II only
(F) III and IV only
