- 1. Explain why the Alternating Series Test does not apply to the series $\sum_{n=1}^{\infty} \frac{(-1)^n (n+1)!}{n!}.$
- 2. Determine the convergence or divergence of the series $\sum_{n=1}^{\infty} (-1)^n \frac{(2n-1)!}{(3n-2)!}$.
- 3. Which of the following series converge?

I.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n}$$

II.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{n+1}$$

Name:

III.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{e^n}$$

- A. I only
- B. I and II only
- C. I and III only
- D. I, II, and III
- 4. Which of the following statements are true about the series $\sum_{n=1}^{\infty} \sin \frac{(2n-1)\pi}{2}$?
 - II. $|a_{n+1}| \le |a_n|$ for $n \ge 1$.
 - III. $\lim_{n\to\infty} a_n \neq 0$
 - A. I only
- B. I and II only
- C. I and III only
- D. I, II, and III

- 5. Which of the following statements is true?
- A. $\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{\pi^n \pi^{-n}}$ diverges by the Alternating Series Test.
- B. $\sum_{n=1}^{\infty} (-1)^{n+1} \sin\left(\frac{(2n-1)\pi}{2}\right)$ converges by the Alternating Series Test.
- C. $\sum_{n=1}^{\infty} (-1)^n n^{-1}$ diverges by the Alternating Series Test.
- D. $\sum_{n=1}^{\infty} (-1)^n n^{-\frac{1}{3}}$ converges by the Alternating Series Test.

Answers to 10.7 CA #2

1. The Alternating Series Test does not apply because $\lim_{n\to\infty} a_n \neq 0$.

2. Converges by Alternating Series Test.

3. C

4. D

5. D