1. Explain why the Alternating Series Test does not apply to the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+1)}{n}$ condition 1 states $\lim _{n \rightarrow \infty} a_{n}=0$ to use the A.S.T., but $\lim _{n \rightarrow \infty} \frac{n+1}{n}=1 \neq 0$
2. The Alternating Series Test can be used to show convergence of which of the following alternating series?

$$
\begin{aligned}
& \text { I. } \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \\
& \sqrt{\lim _{n \rightarrow \infty} \frac{1}{n}=0} \\
& \sqrt{\frac{1}{n} \text { is decreasing }} \\
& \text { for } \\
& n>1
\end{aligned}
$$

II. $\sum_{n=2}^{\infty}(-1)^{n+1}\left(\frac{n}{n^{2}+4}\right)$
III. $\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{4 n}{5 n+3}\right)$

$$
\sqrt{\lim } \frac{n \rightarrow \infty}{} \frac{n}{n^{2}+4}=0
$$

$$
x \lim _{n \rightarrow \infty} \frac{4 n}{5 n+3}=4 / 5
$$

$$
\sqrt{2} \frac{2}{2^{2}+4}>\frac{3}{3^{2}+4}>\frac{4}{4^{2}+4}>\cdots
$$

A. I only
B. II only
C. III only
D. I and II only
E. I, II, and III
3. Which of the following series converge?
aA. $\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{1-2 n}{n}\right)$

$$
\lim _{n \rightarrow \infty} a_{n}=-2
$$

B. $\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{n+1}{3 n}\right) \quad \lim _{n \rightarrow \infty} a_{n}=\frac{1}{3}$
C. $\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{n^{3}}{2 \sqrt{n}}\right) \quad \lim _{n \rightarrow \infty} a_{n}=\infty$

$$
\frac{2 \sqrt{1}}{1}>\frac{2 \sqrt{2}}{8}>\frac{2 \sqrt{3}}{27} \cdots
$$

Use the Alternating Series Test to show the series are convergent.
4. $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{1}{n^{2}}\right)$
$\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0 \quad /$
$\frac{1}{1^{2}}>\frac{1}{2^{2}}>\frac{1}{3^{2}} \cdots \sqrt{ }$ decreasing
Converges by the Alternating Series Test'

$$
\text { 5. } \begin{aligned}
& \sum_{n=1}^{\infty}(-1)^{n}\left(\frac{1}{3}\right) \\
& \lim _{n \rightarrow \infty}\left(\frac{1}{3^{n}}\right)=0 \quad V \\
& \frac{1}{3^{\prime}}>\frac{1}{3^{2}}>\frac{1}{3^{3}} \ldots V
\end{aligned}
$$

Converges by the Alternation Series Test.
6. Calculator active. Which of the following statements are true about the series $\sum_{n=2}^{\infty} a_{n}$, where $a_{n}=\frac{(-1)^{n}}{(-1)^{n}+\sqrt{n}}$
I. The series is alternating.
II. $\left|a_{n+1}\right| \leq\left|a_{n}\right|$ for $n \geq 2$.
III. $\lim _{n \rightarrow \infty} a_{n}=0$

n	a_{n}	sign
2	$\frac{1}{1+\sqrt{2}} \approx 0.414$	pos
3	$\frac{-1}{-1+\sqrt{3}} \approx-1.366$	neg
4	$\frac{1}{1+\sqrt{4}} \approx 0.333$	pos
5	$\frac{-1}{-1+\sqrt{5}} \approx-0.809$	neg

A. I only
B. I and II only
D. I, II, and III
7. Calculator active. Which of the following statements about the series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$, where $a_{n}=\frac{2+\cos n}{n^{2}}$ is
true? true?

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

a_{n} is always positive, so the series is alternating.

$$
\left|a_{1}\right|=0.396
$$

A. The series converges by the Alternating Series Test
B. The Alternating Series Test cannot be used because the series is not alternating. $1 a_{2}=0.112$
C. The Alternating Series Test cannot be used because $\lim _{n \rightarrow \infty} a_{n} \neq 0$. $\left|a_{9}\right| 50.0841 \mid$
D. The Alternating Series Test cannot be used because the terms of a_{n} are not decreasing. $\left|a_{4}\right|=0.0913$
8. The Alternating Series Test can be used to show convergence for which of the following series?
A. $\frac{2}{1}-\frac{3}{2}+\frac{4}{3}-\frac{5}{4}+\frac{6}{5}-\cdots$, where $a_{n}=\frac{(-1)^{n+1}(n+1)}{n} . \quad \lim _{n \rightarrow \infty} a_{n}=1 \neq 0$
B. $\frac{2}{1}-\frac{1}{1}+\frac{2}{2}-\frac{1}{2}+\frac{2}{3}-\frac{1}{3}+\frac{2}{4}-\frac{1}{4}+\cdots$ Not decreasing
C. $1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16}+\frac{1}{25}-\frac{1}{36}+\cdots$, where $a_{n}=(-1)^{n+1} \frac{1}{n^{2}}$

$$
\lim _{n \rightarrow \infty} a_{n}=0,\left|a_{n n}\right|<\left|a_{n}\right|
$$

D. $\frac{3}{2}-\frac{2}{2}+\frac{3}{3}-\frac{2}{3}+\frac{3}{4}-\frac{2}{4}+\cdots$ not decreasing
9. For which of the following series can the Alternating Series Test not be used?
A. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{5}}$
B. $\sum_{n=2}^{\infty} \frac{(-1)^{n} \ln \left(n^{3}\right)}{n}$ C. $\sum_{n=4}^{\infty} \frac{(-1)^{n} n}{n-3} \rightarrow \lim _{n \rightarrow \infty} \frac{n}{n-3}=1 \neq 0$
D. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$
10. Which of the following statements about the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!}$ is true?
$\boldsymbol{a}_{n}=1$

$$
a_{n \rightarrow \infty}=a_{n}=0 \quad\left|a_{n-1}\right|<\left|a_{n}\right|
$$

A. The series diverges by comparison to $\frac{1}{n}$.
B. The series converges by comparison to $\frac{1}{n}$.
C. The series diverges by the Alternating Series Test.
D. The series converges by the Alternating Series Test.
11. Which of the following statements are true about the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}(n+1)!}{(n)!}$?
I. The series is alternating.
II. $\left|a_{n+1}\right| \leq\left|a_{n}\right|$ for $n \geq 1$.
III. $\lim _{n \rightarrow \infty} a_{n}=0$

$$
-\frac{2^{1}}{1!}+\frac{3!}{2!}-\frac{4!}{3!}
$$

A. I only
B. I and II only
C. I and III only
D. I, II, and III
10.7 Alternating Series Test
12. The Alternating Series Test can be used to show convergence for which of the following series?

$$
\text { I. } \quad \sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{1}{n^{2}}\right) \quad \lim _{n \rightarrow \infty} a_{n}=0 \quad \text { and }\left|a_{n+1}\right|<\left|a_{n}\right|
$$

II. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sin n}{n^{2}}$ not decreasing!.
III. $\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{2}+1}-\frac{1}{\sqrt{2}-1}+\frac{1}{\sqrt{3}+1}-\frac{1}{\sqrt{3}-1}+\frac{1}{\sqrt{4}+1}-\frac{1}{\sqrt{4}-1}+\cdots\right)$
A. I only
B. I and II only
C. II and III only
D. I, II, and III
13. If $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{a_{n}}$ converges, which of the following must be true?

* Think about Small frotions $0<\frac{1}{a^{n+1}} \leq \frac{1}{a_{n}} \rightarrow$ true only if $a^{n+1} \geq a^{n}$ VS. big fractions
A. $\lim _{n \rightarrow \infty} a_{n}=0$ and $a_{n+1} \geq a_{n}>0$ for $n \geq 1$.
$\lim _{n \rightarrow \infty} \frac{1}{a_{n}}$ must $=0$. This only
B. $\lim _{n \rightarrow \infty} a_{n}=\infty$ and $a_{n+1} \leq a_{n}$ for $n \geq 1$. happens if $\lim _{n \rightarrow \infty} a_{n}=\infty$
C. $\lim _{n \rightarrow \infty} a_{n}=0$ and $a_{n+1} \leq a_{n}$ for $n \geq 1$.
D. $\lim _{n \rightarrow \infty} a_{n}=\infty$ and $a_{n+1} \geq a_{n}>0$ for $n \geq 1$.

14. For what value of $k>0$ will booth $\sum_{i=1}^{\infty} \frac{(-1)^{k n}}{n} \prod^{\infty} \sum_{n=1}^{\infty}\left(\frac{6}{k}\right)^{n}$ diverge?

Diverse if K is even. $2,4,6, \ldots$

$$
\begin{array}{ll}
\frac{6}{k} \geq 1 & \text { or } \frac{6}{k} \leq-1 \\
6 \geq k & \text { or }-6 \geq k
\end{array}
$$

A. 3
C. 5
D. 7
even and less than 6

