1. Use the Ratio Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n^{4}}{3^{n}}$.
2. If the Ratio Test is applied to the series $\sum_{n=0}^{\infty} \frac{6^{n}}{(n+1)^{n}}$, which of the following inequalities results, implying that
the series converges?
A. $\lim _{n \rightarrow \infty} \frac{6^{n}}{(n+1)^{n}}<1$
B. $\lim _{n \rightarrow \infty} \frac{6(n+1)^{n}}{(n+2)^{n+1}}<1$
C. $\lim _{n \rightarrow \infty} \frac{6^{n+1}}{(n+1)^{n}}<1$
D. $\lim _{n \rightarrow \infty} \frac{6^{n+1}}{(n+1)^{n+1}}<1$
3. If $a_{n}>0$ for all n and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=5$, which of the following series converges?
A. $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{2}}$
B. $\sum_{n=1}^{\infty} \frac{a_{n}}{2^{n}}$
C. $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{5}}$
D. $\sum_{n=1}^{\infty} \frac{a_{n}}{7^{n}}$
4. What are all values of $x>0$ for which the series $\sum_{n=1}^{\infty} \frac{6 n^{3}}{x^{n}}$ converges?
5. Which of the following series converge?
I. $\sum_{n=1}^{\infty} \frac{1}{n!}$
II. $\sum_{n=1}^{\infty} \frac{9^{n}}{n^{5}}$
III. $\sum_{n=1}^{\infty} \frac{5 n}{2 n-1}$
A. I only
B. I and II only
C. I and III only
D. I, II, and III
v s
$\mathrm{I}<x \quad$ 't
d ε
\& τ

