10.8 Ration Test Calculus

1. Use the Ratio Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n^4}{3^n}$.

2. If the Ratio Test is applied to the series $\sum_{n=0}^{\infty} \frac{6^n}{(n+1)^n}$, which of the following inequalities results, implying that the series converges?

A.
$$\lim_{n \to \infty} \frac{6^n}{(n+1)^n} < 1$$
 B.
$$\lim_{n \to \infty} \frac{6(n+1)^n}{(n+2)^{n+1}} < 1$$
 C.
$$\lim_{n \to \infty} \frac{6^{n+1}}{(n+1)^n} < 1$$
 D.
$$\lim_{n \to \infty} \frac{6^{n+1}}{(n+1)^{n+1}} < 1$$

3. If $a_n > 0$ for all *n* and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 5$, which of the following series converges?

A.
$$\sum_{n=1}^{\infty} \frac{a_n}{n^2}$$
 B. $\sum_{n=1}^{\infty} \frac{a_n}{2^n}$ C. $\sum_{n=1}^{\infty} \frac{a_n}{n^5}$ D. $\sum_{n=1}^{\infty} \frac{a_n}{7^n}$

- 4. What are all values of x > 0 for which the series $\sum_{n=1}^{\infty} \frac{6n^3}{x^n}$ converges?
- 5. Which of the following series converge?

I.
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$
 II. $\sum_{n=1}^{\infty} \frac{9^n}{n^5}$ III. $\sum_{n=1}^{\infty} \frac{5n}{2n-1}$

B. I and II only

C. I and III only

D. I, II, and III

	۶. ¥	1 < x .4	3' D	2. B	1. Converges by Ratio Test
Answers to 10.8 CA #1					