

Write your questions and thoughts here! 5. $\sum_{n=1}^{\infty} \frac{(2n)!}{n^5}$	
10.8 Ratio Test Calculus Determine whether the following series converges or	diverges.
$1. \sum_{n=1}^{\infty} \frac{(n+1)3^n}{n!}$	2. $\sum_{n=1}^{\infty} \frac{n!}{5^n}$
3. What are values of $x > 0$ for which the series $\sum_{n=1}^{\infty} \frac{n6^n}{x^n}$ converges?	 4. What are all positive values of p for which the series ∑[∞]_{n=1} n^p/7ⁿ will converge? A. p > 0B. 0 C. p > 1D. There are no positive values where the series will converge.

5. Which of the following series converge?

I.
$$\sum_{n=1}^{\infty} \frac{7^n}{n!}$$
 II. $\sum_{n=1}^{\infty} \frac{n!}{n^{20}}$ III. $\sum_{n=1}^{\infty} \frac{\pi^{-2n}}{n}$

A. I only

B. I and II only C. III only

D. I and III only

E. I, II, and III

6. If the Ratio Test is applied to the series $\sum_{n=1}^{\infty} \frac{n\pi^n}{15^n}$, which of the following inequalities results, implying that the series converges?

A.
$$\lim_{n \to \infty} \frac{n\pi^n}{15^n} < 1$$
 B. $\lim_{n \to \infty} \frac{15^n}{n\pi^n} < 1$ C. $\lim_{n \to \infty} \frac{(n+1)\pi^{n+1}}{15^{n+1}} < 1$ D. $\lim_{n \to \infty} \frac{(n+1)\pi}{15n} < 1$

7. If $a_n > 0$ for all *n* and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 6$, which of the following series converges?

A.
$$\sum_{n=1}^{\infty} a_n$$
 B. $\sum_{n=1}^{\infty} \frac{a_n}{n^7}$ C. $\sum_{n=1}^{\infty} \frac{a_n}{7^n}$

D.
$$\sum_{n=1}^{\infty} \frac{(a_n)^2}{7^n}$$

8. Consider the series $\sum_{n=1}^{\infty} \frac{n!}{3^n}$. If the Ratio Test is applied to the series, which of the following inequalities results, implying the series diverges?

A.
$$\lim_{n \to \infty} \frac{n!}{3^n} < 1$$
 B. $\lim_{n \to \infty} \frac{n!}{3^n} > 1$ C. $\lim_{n \to \infty} \frac{n+1}{3} < 1$ D. $\lim_{n \to \infty} \frac{n+1}{3} > 1$

9. For which of the series is the Ratio Test inconclusive?

I.
$$\sum_{n=1}^{\infty} \frac{1}{3n}$$
 II. $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+1}$ III. $\sum_{n=1}^{\infty} \frac{e^n}{n!}$

A. I only	B. II only	C. I and III only	D. I and II only	E. I, II, and III
-----------	------------	-------------------	------------------	-------------------

10. Apply any appropriate test to determine which of the following series diverges. ∞

I.
$$\sum_{n=1}^{\infty} \frac{n}{2n^2 + 1}$$
 II. $\sum_{n=1}^{\infty} \frac{n!}{9^n}$ III. $\sum_{n=1}^{\infty} \frac{n+1}{4n+1}$

B. II only

Match the test for convergence of an infinite series with the conditions of convergence.				
Convergence Test	Condition of convergence			
11 <i>n</i> th-Term Test	A. $p > 1$			
12 Geometric Series	B. $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} < 1$			
13 <i>p</i> -series	C. $0 < a_n \le b_n$ and $\sum_{n=1}^{\infty} b_n$ converges D. $\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$ and $\sum_{n=1}^{\infty} b_n$ converges			
14 Alternating Series Test	D. $\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$ and $\sum_{n=1}^{\infty} b_n$ converges			
15 Integral Test	E. $ r < 1$			
16 Ratio Test				
17 Comparison Test	F. Inconclusive for convergence			
18 Limit Comparison Test	G. $ a_{n+1} \le a_n $ and $\lim_{n \to \infty} a_n = 0$			
	H. $\int_{1}^{\infty} f(x) dx$ converges.			
10.8 Ratio Test	Test Prep			

19. If the Ratio Test is applied to the series $\sum_{n=1}^{\infty} \frac{7^n}{(n+1)!}$, which of the following limits results, implying that the

A.
$$\lim_{n \to \infty} \frac{7^n}{(n+1)!}$$
B.
$$\lim_{n \to \infty} \frac{7}{n+2}$$
C.
$$\lim_{n \to \infty} \frac{(n+1)!}{7^n}$$
D.
$$\lim_{n \to \infty} \frac{n+2}{7}$$

20. Use the Ratio Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n^n}{n!}$.