Determine whether the following series converges or diverges.

$$
\begin{aligned}
& \text { 1. } \sum_{n=1}^{\infty} \frac{(n+1) 3^{n}}{n!} \quad \boldsymbol{a}_{n+1}=\frac{(n+2) 3^{n+1}}{(n+1)!} \quad \text { 2. } \sum_{n=1}^{\infty} \frac{n!}{5^{n}} \quad \boldsymbol{a}_{n+1}=\frac{(n+1)!}{5^{n+1}} \\
& \lim _{n \rightarrow \infty} \frac{(n+2) 3^{n} \cdot 3^{1}}{(n+1) \cdot n!} \cdot \frac{n!}{(n+1) 3^{n}} \\
& \lim _{n \rightarrow \infty} \frac{(n+2) \cdot 3}{(n+1)^{2}}=0<1 \\
& \text { Converges }
\end{aligned}
$$

4. What are all positive values of p for which the series $\sum_{n=1}^{\infty} \frac{n^{p}}{7^{n}}$ will converge? $a_{n+1}=\frac{(n+1)^{p}}{7^{n+1}}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\left(\frac{n+1}{}\right)^{p} \cdot}{7^{\cdot} \cdot 7^{n}}<7^{n+1} 7^{n+1} \\
& \lim _{n \rightarrow \infty} \frac{(n+1)^{p}}{7 \cdot n^{p}}<1 \quad \lim _{n \rightarrow \infty} \frac{1}{7} \cdot\left(\frac{(n+1)}{}\right)^{p}<1
\end{aligned}
$$

A. $p>0$
B. $0<p<7$
C. $p>1$
D. There are no positive values where the series will converge.
5. Which of the following series converge?

$$
\begin{aligned}
& \text { I. } \sum_{n=1}^{\infty} \frac{7^{n}}{n!} \\
& \lim _{n \rightarrow \infty} \frac{7^{n+1}}{(n+1)!} \cdot \frac{n!}{7^{n}} \\
& \lim _{n \rightarrow \infty} \frac{(n+1)!}{(n+1)^{20}} \cdot \frac{n^{20}}{n!} \\
& \int_{\text {III. }} \sum_{n=1}^{\infty} \frac{\pi^{-2 n}}{n} \\
& \lim _{n \rightarrow \infty} \frac{7^{n} \cdot 7^{\prime}}{(n+1) \cdot m^{\infty} \cdot \frac{n^{\prime}}{7^{n}}}<1
\end{aligned}
$$

A. I only
B. I and II only
C. III only
D. I and III only
E. I, II, and III
6. If the Ratio Test is applied to the series $\sum_{n=1}^{\infty} \frac{n \pi^{n}}{15^{n}}$, which of the following inequalities results, implying that the
series converges?

$$
\begin{aligned}
a_{n+1}=\frac{(n+1) \cdot \pi^{n+1}}{15^{n+1}} \quad & \lim _{n \rightarrow \infty} \frac{(n+1) \pi^{n} \cdot \pi}{15^{n} \cdot 15} \cdot \frac{15^{n}}{n \pi^{n}} \\
& \lim _{n \rightarrow \infty} \frac{(n+1) \pi}{15 n}=\frac{\pi}{15}<1
\end{aligned}
$$

A. $\lim _{n \rightarrow \infty} \frac{n \pi^{n}}{15^{n}}<1$
B. $\lim _{n \rightarrow \infty} \frac{15^{n}}{n \pi^{n}}<1$
C. $\lim _{n \rightarrow \infty} \frac{(n+1) \pi^{n+1}}{15^{n+1}}<1$
D. $\lim _{n \rightarrow \infty} \frac{(n+1) \pi}{15 n}<1$
7. If $a_{n}>0$ for all n and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=6$, which of the following series converges?

$$
\begin{array}{ll}
& \lim _{n \rightarrow \infty} \frac{a_{n+1}}{(n+1)^{7}} \cdot \frac{n^{7}}{a_{n}} \\
>1 \text {, diverges } & \lim _{n \rightarrow \infty} 6 \cdot \frac{n^{7}}{(n+1)^{7}} \\
& >1 \text {, divers } \\
\text { A. } \sum_{n=1}^{\infty} a_{n} & \text { B. } \sum_{n=1}^{\infty} \frac{a_{n}}{n^{7}}
\end{array}
$$

$\lim _{n \rightarrow \infty} 6 \cdot \frac{1}{7}<1$

C. $\sum_{n=1}^{\infty} \frac{a_{n}}{7^{n}}$
D. $\sum_{n=1}^{\infty} \frac{\left(a_{n}\right)^{2}}{7^{n}}$
8. Consider the series $\sum_{n=1}^{\infty} \frac{n!}{3^{n}}$. If the Ratio Test is applied to the series, which of the following inequalities results, implying the series diverges?

$$
a_{n+1}=\frac{(n+1)!}{3^{n+1}}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{(n+1) \cdot n^{x}}{3^{x} \cdot 3^{1}} \cdot \frac{3^{n}}{n_{0}^{x}} \\
& \lim _{n \rightarrow \infty} \frac{n+1}{3}>1
\end{aligned}
$$

A. $\lim _{n \rightarrow \infty} \frac{n!}{3^{n}}<1$
B. $\lim _{n \rightarrow \infty} \frac{n!}{3^{n}}>1$
C. $\lim _{n \rightarrow \infty} \frac{n+1}{3}<1$
D. $\lim _{n \rightarrow \infty} \frac{n+1}{3}>1$
9. For which of the series is the Ratio Test inconclusive? $\quad \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$

$$
\begin{gathered}
\text { I. } \sum_{n=1}^{\infty} \frac{1}{3 n} \\
\lim _{n \rightarrow \infty} \frac{1}{3(n+1)} \cdot \frac{3 n}{1}=\frac{3}{3} \\
=1 \\
\text { Inconclusive }
\end{gathered}
$$

II. $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+1}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\sqrt{n+1}}{n+2} \cdot \frac{n+1}{\sqrt{n}} \\
& \sim \lim _{n \rightarrow \infty} \frac{\sqrt{n} \cdot n}{n \cdot \sqrt{n}}=1 \\
& \operatorname{Lnconclusive~}_{n}^{n}
\end{aligned}
$$

III. $\quad \sum_{n=1}^{\infty} \frac{e^{n}}{n!}$

$\lim _{n \rightarrow \infty} \frac{e^{\prime}}{n+1}=0$
converges
A. I only
B. II only
C. I and III only
D. I and II only
E. I, II, and III
10. Apply any appropriate test to determine which of the following series diverges.
I. $\sum_{n=1}^{\infty} \frac{n}{2 n^{2}+1}$

Limit comparison to $\frac{1}{n}$ (which

$$
\operatorname{Lim}_{n \rightarrow \infty} \frac{n}{2 n^{2}+1} \cdot \frac{n}{1}=\frac{1}{2}
$$

Finite and positive
\therefore both diverge
II. $\quad \sum_{n=1}^{\infty} \frac{n!}{9^{n}}$ $\operatorname{lin}^{\ln (e x s)} \lim _{n \rightarrow \infty} \frac{(n+1) n!}{9^{n} \cdot 9^{1}} \cdot \frac{n^{n}}{n!}$

$$
\lim _{n \rightarrow \infty} \frac{n+1}{9}=\infty>1
$$

diverges
III. $\sum_{n=1}^{\infty} \frac{n+1}{4 n+1}$
$n^{\text {th }}$ term test $\lim _{n \rightarrow \infty} a_{n} \neq 0$
\therefore diverges
D. I and II only
E. I, II, and III

Match the test for convergence of an infinite series with the conditions of convergence.

Convergence Test
11. F n th-Term Test
12. E Geometric Series
13. $A_{p \text {-series }}$
14. $\frac{G}{H}$ Alternating S
16. \qquad Ratio Test
17. C Comparison Test
18. D Limit Comparison Test

Condition of convergence
入. $p>1$
B $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}<1$
X $0<a_{n} \leq b_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converges
Q $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L>0$ and $\sum_{n=1} b_{n}$ converges
D. $|r|<1$
A. Inconclusive for convergence
G. $\left|a_{n+1}\right| \leq\left|a_{n}\right|$ and $\lim _{n \rightarrow \infty} a_{n}=0$
H. $\int_{1}^{\infty} f(x) d x$ converges.
10.8 Ratio Test
19. If the Ratio Test is applied to the series $\sum_{n=1}^{\infty} \frac{7^{n}}{(n+1)!}$, which of the following limits results, implying that the
series converges?

$$
a_{n}=\frac{7^{n+1}}{(n+2)!}
$$

$$
\lim _{n \rightarrow \infty} \frac{7^{n} \cdot 7}{(n+2)(n+1) n^{y}} \cdot \frac{(n+1) n!}{7^{n}}
$$

$$
\lim _{n \rightarrow \infty} \frac{7}{n+2}
$$

A. $\lim _{n \rightarrow \infty} \frac{7^{n}}{(n+1)!}$
B. $\lim _{n \rightarrow \infty} \frac{7}{n+2}$
C. $\lim _{n \rightarrow \infty} \frac{(n+1)!}{7^{n}}$
D. $\lim _{n \rightarrow \infty} \frac{n+2}{7}$
20. Use the Ratio Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$.

$$
\begin{aligned}
& a_{n+1}=\frac{(n+1)^{n+1}}{(n+1)!}=\frac{(n+1)^{n} \cdot(n+1)}{(n+1) \cdot n!}=\frac{(n+1)^{n}}{n!} \\
& \lim _{n \rightarrow \infty} \frac{(n+1)^{n}}{n!} \cdot \frac{n!}{n^{n}} \\
& \lim _{n \rightarrow \infty} \frac{(n+1)^{n}}{n^{n}}=\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{n}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e> \\
& \text { Definition of " } e^{\prime \prime}
\end{aligned}
$$

