1. Which of the following series are conditionally convergent?
χ I. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}}$
Abs: $\sum_{n=1}^{\infty} \frac{1}{n^{4}} \begin{aligned} & \text { converges } \\ & \text { Absolutely }\end{aligned}$ p-series
$\sqrt{\text { II. }} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$

$$
\sqrt{\text { III. }} \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt[3]{n}}
$$

Abs: $\sum_{n=1}^{\infty} \frac{1}{n} \underset{(p-\text { series })}{\text { divers }} \quad$ Abs: $: \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} \underset{(p-\text {-erie } i=s)}{\text { divers es }}$

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \text { converges } \\
\begin{array}{c}
\text { (alternating } \\
\text { harmonic) }
\end{array}
\end{gathered}
$$

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}
$$

$$
\lim _{n \rightarrow \infty} a_{n}=0 /
$$

$$
\frac{a_{n+1}}{a_{n}}=\frac{1}{(n+1)^{\frac{1}{3}}} \cdot \frac{n^{\frac{1}{3}}}{1}<\left.\right|_{\text {converge }}
$$

$$
\begin{aligned}
& \frac{a_{n+1}}{a_{n}}= \\
& \text { d III only }
\end{aligned}
$$

D. II and III only
A. I only
B. I and II only
C. I and III only

Determine whether the series converges absolutely, converges conditionally, or diverges.
2. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}\left(n^{2}+8\right)}{\pi^{n}}$

Ratio Test
Absolute: $\sum_{n=1}^{\infty} \frac{n^{2}+8}{\pi^{n}} \lim _{n \rightarrow \infty} \frac{(n+1)^{2}+8}{\pi^{n+1}} \cdot \frac{\pi^{n}}{n^{2}+8}$
3. $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n}$ Absolute: $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges
\uparrow
Alt. Series Test

$$
\lim _{n \rightarrow \infty} \frac{(n+1)^{2}+8}{\pi\left(n^{2}+8\right)}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n}=0 \int \\
& \frac{1}{n} \text { is decreasing }
\end{aligned}
$$

$$
\frac{1}{\pi}<1
$$

Converges absolutely
converges conditionally

Alt. series
test \quad Diverges

Same
Diverges
6. For which values x is the series $\sum_{n=1}^{\infty} \frac{n x^{n}}{4^{n}\left(n^{2}+1\right)}$ conditionally convergent?

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{(n+1) x^{n+1}}{4^{n+1}\left[(n+1)^{2}+1\right]} \cdot \frac{4^{n}\left(n^{2}+1\right)}{n x^{n}}\right|<1 \\
& \lim _{n \rightarrow \infty}\left|\frac{(n+1) x^{n} \cdot x^{1} \cdot 4^{n}\left(n^{2}+1\right)}{4^{n} \cdot 4^{1} \cdot n \cdot x^{n} \cdot\left[(n+1)^{2}+1\right]}\right|<1
\end{aligned}
$$

Converges Absolutely

$$
\left\{\begin{array}{l}
\left|\frac{x}{4}\right|<1 \\
-1<\frac{x}{4}<1 \\
-4<x<4 \leftarrow \text { abs.conv. }
\end{array}\right.
$$

At $x=-4$ converges by Alt. Series Test
A. $x=4$
B. $x=-4$
C. $x>4$
D. $-4<x<4$
7. Which of the following statements is true about the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{1 / 3}}$ Abs $\sum_{n=1}^{\infty} \frac{1}{n^{1 / 3}}$ diverges
A. The series converges conditionally.
B. The series converges absolutely.

Alt. Series test

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{\frac{1}{2}}}=0 \sqrt{ }
$$

C. The series converges but neither conditionally nor absolutely.
D. The series diverges.
$\frac{1}{n^{1 / 3}}$ is decreasing $/$ converges
8. Which of the following statements about the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{1+n^{3 / 2}}$ is true? Abs $: \sum_{n=1}^{\infty} \frac{1}{1+n^{3 / 2}}$ compare to $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$
A. The series converges conditionally.
B. The series converges absolutely.
C. The series converges but neither conditionally nor absolutely.
D. The series diverges.
9. Which of the following statements about the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} \ln n}{n}$ is true?
I. Converges Absolutely

Absolute:
comparison test

$$
\frac{\ln (n)}{n}>\frac{1}{n}
$$

$\frac{1}{n}$ diverges (harmonic)
$\frac{\ln (n)}{n}$ also diverges

$$
a_{n}=\frac{\ln (n)}{n}
$$

II. Diverges \uparrow

Alt. Series Test
(1) $\lim _{n \rightarrow \infty} a_{n}=0$ J
(2) Decreasing?

$$
\begin{array}{r}
0<\frac{1}{1+n^{3 / 2}}<\frac{1}{n^{3 / 2}} \\
\text { Converges! }
\end{array}
$$

A. I only
B. II only
C. III only
III. Converges Conditionally

$$
\begin{aligned}
\Rightarrow a_{(n)}^{\prime}=\frac{\frac{1}{n} \cdot n-\ln (n)}{n^{2}} & =0 \\
1-\ln (n) & =0 \\
n & =e
\end{aligned}
$$

$$
\begin{gathered}
n=e \\
n>e
\end{gathered}
$$ Converses

Decreosing for $n>e . ~$
D. I and III only

$$
\begin{aligned}
& \text { 10. For what values of } x \text { is the series } \sum^{\infty} \frac{n(x+5)^{n}}{7^{n}} \text { absolutely convergent? } \quad\left|\frac{x+5}{7}\right|<1 \\
& \lim _{n \rightarrow \infty}\left|\frac{(n+1)(x+5)^{n+1}}{7^{n+1}} \cdot \frac{7^{n}}{n(x+5)^{n}}\right|^{n=1}<1 \quad-1<\frac{x+5}{7}<1 \\
& \lim _{n \rightarrow \infty}\left|\frac{(n+1)}{n} \cdot \frac{(x+5)}{7}\right|<1
\end{aligned} \quad-7<x+5<7 \quad-12<x<2<\text { abs conv. } \quad-\quad l l
$$

A. $x=-12$
B. $x=2$
C. $x>2$
D. $-12<x<2$

